This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of an "at most one" and an "at most one" restricted to the range inside a universal quantification. (Contributed by Peter Mazsa, 3-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alrmomorn | |- ( A. x E* y e. ran R x R y <-> A. x E* y x R y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rmo | |- ( E* y e. ran R x R y <-> E* y ( y e. ran R /\ x R y ) ) |
|
| 2 | cnvresrn | |- ( `' R |` ran R ) = `' R |
|
| 3 | 2 | breqi | |- ( y ( `' R |` ran R ) x <-> y `' R x ) |
| 4 | brres | |- ( x e. _V -> ( y ( `' R |` ran R ) x <-> ( y e. ran R /\ y `' R x ) ) ) |
|
| 5 | 4 | elv | |- ( y ( `' R |` ran R ) x <-> ( y e. ran R /\ y `' R x ) ) |
| 6 | brcnvg | |- ( ( y e. _V /\ x e. _V ) -> ( y `' R x <-> x R y ) ) |
|
| 7 | 6 | el2v | |- ( y `' R x <-> x R y ) |
| 8 | 7 | anbi2i | |- ( ( y e. ran R /\ y `' R x ) <-> ( y e. ran R /\ x R y ) ) |
| 9 | 5 8 | bitri | |- ( y ( `' R |` ran R ) x <-> ( y e. ran R /\ x R y ) ) |
| 10 | 3 9 7 | 3bitr3i | |- ( ( y e. ran R /\ x R y ) <-> x R y ) |
| 11 | 10 | mobii | |- ( E* y ( y e. ran R /\ x R y ) <-> E* y x R y ) |
| 12 | 1 11 | bitri | |- ( E* y e. ran R x R y <-> E* y x R y ) |
| 13 | 12 | albii | |- ( A. x E* y e. ran R x R y <-> A. x E* y x R y ) |