This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of an "at most one" and an "at most one" restricted to the domain inside a universal quantification. (Contributed by Peter Mazsa, 5-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alrmomodm | ⊢ ( Rel 𝑅 → ( ∀ 𝑥 ∃* 𝑢 ∈ dom 𝑅 𝑢 𝑅 𝑥 ↔ ∀ 𝑥 ∃* 𝑢 𝑢 𝑅 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rmo | ⊢ ( ∃* 𝑢 ∈ dom 𝑅 𝑢 𝑅 𝑥 ↔ ∃* 𝑢 ( 𝑢 ∈ dom 𝑅 ∧ 𝑢 𝑅 𝑥 ) ) | |
| 2 | brres | ⊢ ( 𝑥 ∈ V → ( 𝑢 ( 𝑅 ↾ dom 𝑅 ) 𝑥 ↔ ( 𝑢 ∈ dom 𝑅 ∧ 𝑢 𝑅 𝑥 ) ) ) | |
| 3 | 2 | elv | ⊢ ( 𝑢 ( 𝑅 ↾ dom 𝑅 ) 𝑥 ↔ ( 𝑢 ∈ dom 𝑅 ∧ 𝑢 𝑅 𝑥 ) ) |
| 4 | resdm | ⊢ ( Rel 𝑅 → ( 𝑅 ↾ dom 𝑅 ) = 𝑅 ) | |
| 5 | 4 | breqd | ⊢ ( Rel 𝑅 → ( 𝑢 ( 𝑅 ↾ dom 𝑅 ) 𝑥 ↔ 𝑢 𝑅 𝑥 ) ) |
| 6 | 3 5 | bitr3id | ⊢ ( Rel 𝑅 → ( ( 𝑢 ∈ dom 𝑅 ∧ 𝑢 𝑅 𝑥 ) ↔ 𝑢 𝑅 𝑥 ) ) |
| 7 | 6 | mobidv | ⊢ ( Rel 𝑅 → ( ∃* 𝑢 ( 𝑢 ∈ dom 𝑅 ∧ 𝑢 𝑅 𝑥 ) ↔ ∃* 𝑢 𝑢 𝑅 𝑥 ) ) |
| 8 | 1 7 | bitrid | ⊢ ( Rel 𝑅 → ( ∃* 𝑢 ∈ dom 𝑅 𝑢 𝑅 𝑥 ↔ ∃* 𝑢 𝑢 𝑅 𝑥 ) ) |
| 9 | 8 | albidv | ⊢ ( Rel 𝑅 → ( ∀ 𝑥 ∃* 𝑢 ∈ dom 𝑅 𝑢 𝑅 𝑥 ↔ ∀ 𝑥 ∃* 𝑢 𝑢 𝑅 𝑥 ) ) |