This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If I is an invariant of F , then its value is unchanged after any number of iterations of F . (Contributed by Paul Chapman, 31-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | alginv.1 | ⊢ 𝑅 = seq 0 ( ( 𝐹 ∘ 1st ) , ( ℕ0 × { 𝐴 } ) ) | |
| alginv.2 | ⊢ 𝐹 : 𝑆 ⟶ 𝑆 | ||
| alginv.3 | ⊢ ( 𝑥 ∈ 𝑆 → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ 𝑥 ) ) | ||
| Assertion | alginv | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐾 ∈ ℕ0 ) → ( 𝐼 ‘ ( 𝑅 ‘ 𝐾 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alginv.1 | ⊢ 𝑅 = seq 0 ( ( 𝐹 ∘ 1st ) , ( ℕ0 × { 𝐴 } ) ) | |
| 2 | alginv.2 | ⊢ 𝐹 : 𝑆 ⟶ 𝑆 | |
| 3 | alginv.3 | ⊢ ( 𝑥 ∈ 𝑆 → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ 𝑥 ) ) | |
| 4 | 2fveq3 | ⊢ ( 𝑧 = 0 → ( 𝐼 ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) | |
| 5 | 4 | eqeq1d | ⊢ ( 𝑧 = 0 → ( ( 𝐼 ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ↔ ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ) |
| 6 | 5 | imbi2d | ⊢ ( 𝑧 = 0 → ( ( 𝐴 ∈ 𝑆 → ( 𝐼 ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ↔ ( 𝐴 ∈ 𝑆 → ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ) ) |
| 7 | 2fveq3 | ⊢ ( 𝑧 = 𝑘 → ( 𝐼 ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 𝑘 ) ) ) | |
| 8 | 7 | eqeq1d | ⊢ ( 𝑧 = 𝑘 → ( ( 𝐼 ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ↔ ( 𝐼 ‘ ( 𝑅 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ) |
| 9 | 8 | imbi2d | ⊢ ( 𝑧 = 𝑘 → ( ( 𝐴 ∈ 𝑆 → ( 𝐼 ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ↔ ( 𝐴 ∈ 𝑆 → ( 𝐼 ‘ ( 𝑅 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ) ) |
| 10 | 2fveq3 | ⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( 𝐼 ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) ) | |
| 11 | 10 | eqeq1d | ⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( ( 𝐼 ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ↔ ( 𝐼 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑧 = ( 𝑘 + 1 ) → ( ( 𝐴 ∈ 𝑆 → ( 𝐼 ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ↔ ( 𝐴 ∈ 𝑆 → ( 𝐼 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ) ) |
| 13 | 2fveq3 | ⊢ ( 𝑧 = 𝐾 → ( 𝐼 ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 𝐾 ) ) ) | |
| 14 | 13 | eqeq1d | ⊢ ( 𝑧 = 𝐾 → ( ( 𝐼 ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ↔ ( 𝐼 ‘ ( 𝑅 ‘ 𝐾 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ) |
| 15 | 14 | imbi2d | ⊢ ( 𝑧 = 𝐾 → ( ( 𝐴 ∈ 𝑆 → ( 𝐼 ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ↔ ( 𝐴 ∈ 𝑆 → ( 𝐼 ‘ ( 𝑅 ‘ 𝐾 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ) ) |
| 16 | eqidd | ⊢ ( 𝐴 ∈ 𝑆 → ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) | |
| 17 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 18 | 0zd | ⊢ ( 𝐴 ∈ 𝑆 → 0 ∈ ℤ ) | |
| 19 | id | ⊢ ( 𝐴 ∈ 𝑆 → 𝐴 ∈ 𝑆 ) | |
| 20 | 2 | a1i | ⊢ ( 𝐴 ∈ 𝑆 → 𝐹 : 𝑆 ⟶ 𝑆 ) |
| 21 | 17 1 18 19 20 | algrp1 | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑅 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) |
| 22 | 21 | fveq2d | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐼 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) ) |
| 23 | 17 1 18 19 20 | algrf | ⊢ ( 𝐴 ∈ 𝑆 → 𝑅 : ℕ0 ⟶ 𝑆 ) |
| 24 | 23 | ffvelcdmda | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑅 ‘ 𝑘 ) ∈ 𝑆 ) |
| 25 | 2fveq3 | ⊢ ( 𝑥 = ( 𝑅 ‘ 𝑘 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) ) | |
| 26 | fveq2 | ⊢ ( 𝑥 = ( 𝑅 ‘ 𝑘 ) → ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ ( 𝑅 ‘ 𝑘 ) ) ) | |
| 27 | 25 26 | eqeq12d | ⊢ ( 𝑥 = ( 𝑅 ‘ 𝑘 ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐼 ‘ 𝑥 ) ↔ ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 𝑘 ) ) ) ) |
| 28 | 27 3 | vtoclga | ⊢ ( ( 𝑅 ‘ 𝑘 ) ∈ 𝑆 → ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 𝑘 ) ) ) |
| 29 | 24 28 | syl | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐼 ‘ ( 𝐹 ‘ ( 𝑅 ‘ 𝑘 ) ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 𝑘 ) ) ) |
| 30 | 22 29 | eqtrd | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐼 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 𝑘 ) ) ) |
| 31 | 30 | eqeq1d | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐼 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ↔ ( 𝐼 ‘ ( 𝑅 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ) |
| 32 | 31 | biimprd | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐼 ‘ ( 𝑅 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) → ( 𝐼 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ) |
| 33 | 32 | expcom | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝐴 ∈ 𝑆 → ( ( 𝐼 ‘ ( 𝑅 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) → ( 𝐼 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ) ) |
| 34 | 33 | a2d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝐴 ∈ 𝑆 → ( 𝐼 ‘ ( 𝑅 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) → ( 𝐴 ∈ 𝑆 → ( 𝐼 ‘ ( 𝑅 ‘ ( 𝑘 + 1 ) ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ) ) |
| 35 | 6 9 12 15 16 34 | nn0ind | ⊢ ( 𝐾 ∈ ℕ0 → ( 𝐴 ∈ 𝑆 → ( 𝐼 ‘ ( 𝑅 ‘ 𝐾 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) ) |
| 36 | 35 | impcom | ⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝐾 ∈ ℕ0 ) → ( 𝐼 ‘ ( 𝑅 ‘ 𝐾 ) ) = ( 𝐼 ‘ ( 𝑅 ‘ 0 ) ) ) |