This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two complex numbers is equal to the difference of these two complex numbers iff the subtrahend is 0. (Contributed by AV, 8-May-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addsubeq0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) = ( 𝐴 − 𝐵 ) ↔ 𝐵 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) | |
| 2 | 1 | eqcomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 − 𝐵 ) = ( 𝐴 + - 𝐵 ) ) |
| 3 | 2 | eqeq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) = ( 𝐴 − 𝐵 ) ↔ ( 𝐴 + 𝐵 ) = ( 𝐴 + - 𝐵 ) ) ) |
| 4 | negcl | ⊢ ( 𝐵 ∈ ℂ → - 𝐵 ∈ ℂ ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → - 𝐵 ∈ ℂ ) |
| 6 | addcan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ - 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) = ( 𝐴 + - 𝐵 ) ↔ 𝐵 = - 𝐵 ) ) | |
| 7 | 5 6 | mpd3an3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) = ( 𝐴 + - 𝐵 ) ↔ 𝐵 = - 𝐵 ) ) |
| 8 | eqneg | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 = - 𝐵 ↔ 𝐵 = 0 ) ) | |
| 9 | 8 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 = - 𝐵 ↔ 𝐵 = 0 ) ) |
| 10 | 3 7 9 | 3bitrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) = ( 𝐴 − 𝐵 ) ↔ 𝐵 = 0 ) ) |