This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A number equal to its negative is zero. (Contributed by NM, 12-Jul-2005) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqneg | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 = - 𝐴 ↔ 𝐴 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1p1times | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 + 1 ) · 𝐴 ) = ( 𝐴 + 𝐴 ) ) | |
| 2 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 3 | 2 2 | addcli | ⊢ ( 1 + 1 ) ∈ ℂ |
| 4 | 3 | mul01i | ⊢ ( ( 1 + 1 ) · 0 ) = 0 |
| 5 | negid | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + - 𝐴 ) = 0 ) | |
| 6 | 4 5 | eqtr4id | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 + 1 ) · 0 ) = ( 𝐴 + - 𝐴 ) ) |
| 7 | 1 6 | eqeq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( 1 + 1 ) · 𝐴 ) = ( ( 1 + 1 ) · 0 ) ↔ ( 𝐴 + 𝐴 ) = ( 𝐴 + - 𝐴 ) ) ) |
| 8 | id | ⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) | |
| 9 | 0cnd | ⊢ ( 𝐴 ∈ ℂ → 0 ∈ ℂ ) | |
| 10 | 3 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( 1 + 1 ) ∈ ℂ ) |
| 11 | 1re | ⊢ 1 ∈ ℝ | |
| 12 | 11 11 | readdcli | ⊢ ( 1 + 1 ) ∈ ℝ |
| 13 | 0lt1 | ⊢ 0 < 1 | |
| 14 | 11 11 13 13 | addgt0ii | ⊢ 0 < ( 1 + 1 ) |
| 15 | 12 14 | gt0ne0ii | ⊢ ( 1 + 1 ) ≠ 0 |
| 16 | 15 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( 1 + 1 ) ≠ 0 ) |
| 17 | 8 9 10 16 | mulcand | ⊢ ( 𝐴 ∈ ℂ → ( ( ( 1 + 1 ) · 𝐴 ) = ( ( 1 + 1 ) · 0 ) ↔ 𝐴 = 0 ) ) |
| 18 | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) | |
| 19 | 8 8 18 | addcand | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 + 𝐴 ) = ( 𝐴 + - 𝐴 ) ↔ 𝐴 = - 𝐴 ) ) |
| 20 | 7 17 19 | 3bitr3rd | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 = - 𝐴 ↔ 𝐴 = 0 ) ) |