This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two complex numbers is equal to the difference of these two complex numbers iff the subtrahend is 0. (Contributed by AV, 8-May-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addsubeq0 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) = ( A - B ) <-> B = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negsub | |- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) |
|
| 2 | 1 | eqcomd | |- ( ( A e. CC /\ B e. CC ) -> ( A - B ) = ( A + -u B ) ) |
| 3 | 2 | eqeq2d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) = ( A - B ) <-> ( A + B ) = ( A + -u B ) ) ) |
| 4 | negcl | |- ( B e. CC -> -u B e. CC ) |
|
| 5 | 4 | adantl | |- ( ( A e. CC /\ B e. CC ) -> -u B e. CC ) |
| 6 | addcan | |- ( ( A e. CC /\ B e. CC /\ -u B e. CC ) -> ( ( A + B ) = ( A + -u B ) <-> B = -u B ) ) |
|
| 7 | 5 6 | mpd3an3 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) = ( A + -u B ) <-> B = -u B ) ) |
| 8 | eqneg | |- ( B e. CC -> ( B = -u B <-> B = 0 ) ) |
|
| 9 | 8 | adantl | |- ( ( A e. CC /\ B e. CC ) -> ( B = -u B <-> B = 0 ) ) |
| 10 | 3 7 9 | 3bitrd | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) = ( A - B ) <-> B = 0 ) ) |