This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC ORDER THEORY
Lattices
Subset order structures
acsinfdimd
Metamath Proof Explorer
Description: In an algebraic closure system, if two independent sets have equal
closure and one is infinite, then they are equinumerous. This is proven
by using acsdomd twice with acsinfd . See Section II.5 in Cohn
p. 81 to 82. (Contributed by David Moews , 1-May-2017)
Ref
Expression
Hypotheses
acsinfdimd.1
⊢ φ → A ∈ ACS ⁡ X
acsinfdimd.2
⊢ N = mrCls ⁡ A
acsinfdimd.3
⊢ I = mrInd ⁡ A
acsinfdimd.4
⊢ φ → S ∈ I
acsinfdimd.5
⊢ φ → T ∈ I
acsinfdimd.6
⊢ φ → N ⁡ S = N ⁡ T
acsinfdimd.7
⊢ φ → ¬ S ∈ Fin
Assertion
acsinfdimd
⊢ φ → S ≈ T
Proof
Step
Hyp
Ref
Expression
1
acsinfdimd.1
⊢ φ → A ∈ ACS ⁡ X
2
acsinfdimd.2
⊢ N = mrCls ⁡ A
3
acsinfdimd.3
⊢ I = mrInd ⁡ A
4
acsinfdimd.4
⊢ φ → S ∈ I
5
acsinfdimd.5
⊢ φ → T ∈ I
6
acsinfdimd.6
⊢ φ → N ⁡ S = N ⁡ T
7
acsinfdimd.7
⊢ φ → ¬ S ∈ Fin
8
1
acsmred
⊢ φ → A ∈ Moore ⁡ X
9
3 8 5
mrissd
⊢ φ → T ⊆ X
10
1 2 3 4 9 6 7
acsdomd
⊢ φ → S ≼ T
11
3 8 4
mrissd
⊢ φ → S ⊆ X
12
6
eqcomd
⊢ φ → N ⁡ T = N ⁡ S
13
1 2 3 4 9 6 7
acsinfd
⊢ φ → ¬ T ∈ Fin
14
1 2 3 5 11 12 13
acsdomd
⊢ φ → T ≼ S
15
sbth
⊢ S ≼ T ∧ T ≼ S → S ≈ T
16
10 14 15
syl2anc
⊢ φ → S ≈ T