This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closure in an algebraic closure system is the union of the closures of finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | acsdrscl.f | |- F = ( mrCls ` C ) |
|
| Assertion | acsficl | |- ( ( C e. ( ACS ` X ) /\ S C_ X ) -> ( F ` S ) = U. ( F " ( ~P S i^i Fin ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsdrscl.f | |- F = ( mrCls ` C ) |
|
| 2 | fveq2 | |- ( s = S -> ( F ` s ) = ( F ` S ) ) |
|
| 3 | pweq | |- ( s = S -> ~P s = ~P S ) |
|
| 4 | 3 | ineq1d | |- ( s = S -> ( ~P s i^i Fin ) = ( ~P S i^i Fin ) ) |
| 5 | 4 | imaeq2d | |- ( s = S -> ( F " ( ~P s i^i Fin ) ) = ( F " ( ~P S i^i Fin ) ) ) |
| 6 | 5 | unieqd | |- ( s = S -> U. ( F " ( ~P s i^i Fin ) ) = U. ( F " ( ~P S i^i Fin ) ) ) |
| 7 | 2 6 | eqeq12d | |- ( s = S -> ( ( F ` s ) = U. ( F " ( ~P s i^i Fin ) ) <-> ( F ` S ) = U. ( F " ( ~P S i^i Fin ) ) ) ) |
| 8 | isacs3lem | |- ( C e. ( ACS ` X ) -> ( C e. ( Moore ` X ) /\ A. s e. ~P C ( ( toInc ` s ) e. Dirset -> U. s e. C ) ) ) |
|
| 9 | 1 | isacs4lem | |- ( ( C e. ( Moore ` X ) /\ A. s e. ~P C ( ( toInc ` s ) e. Dirset -> U. s e. C ) ) -> ( C e. ( Moore ` X ) /\ A. t e. ~P ~P X ( ( toInc ` t ) e. Dirset -> ( F ` U. t ) = U. ( F " t ) ) ) ) |
| 10 | 1 | isacs5lem | |- ( ( C e. ( Moore ` X ) /\ A. t e. ~P ~P X ( ( toInc ` t ) e. Dirset -> ( F ` U. t ) = U. ( F " t ) ) ) -> ( C e. ( Moore ` X ) /\ A. s e. ~P X ( F ` s ) = U. ( F " ( ~P s i^i Fin ) ) ) ) |
| 11 | 8 9 10 | 3syl | |- ( C e. ( ACS ` X ) -> ( C e. ( Moore ` X ) /\ A. s e. ~P X ( F ` s ) = U. ( F " ( ~P s i^i Fin ) ) ) ) |
| 12 | 11 | simprd | |- ( C e. ( ACS ` X ) -> A. s e. ~P X ( F ` s ) = U. ( F " ( ~P s i^i Fin ) ) ) |
| 13 | 12 | adantr | |- ( ( C e. ( ACS ` X ) /\ S C_ X ) -> A. s e. ~P X ( F ` s ) = U. ( F " ( ~P s i^i Fin ) ) ) |
| 14 | elfvdm | |- ( C e. ( ACS ` X ) -> X e. dom ACS ) |
|
| 15 | elpw2g | |- ( X e. dom ACS -> ( S e. ~P X <-> S C_ X ) ) |
|
| 16 | 14 15 | syl | |- ( C e. ( ACS ` X ) -> ( S e. ~P X <-> S C_ X ) ) |
| 17 | 16 | biimpar | |- ( ( C e. ( ACS ` X ) /\ S C_ X ) -> S e. ~P X ) |
| 18 | 7 13 17 | rspcdva | |- ( ( C e. ( ACS ` X ) /\ S C_ X ) -> ( F ` S ) = U. ( F " ( ~P S i^i Fin ) ) ) |