This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of two versions of the Axiom of Choice. The proof uses neither AC nor the Axiom of Regularity. (Contributed by NM, 5-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | aceq2 | ⊢ ( ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑧 ∃! 𝑣 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ↔ ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral | ⊢ ( ∀ 𝑡 ∈ 𝑧 ∃! 𝑣 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ↔ ∀ 𝑡 ( 𝑡 ∈ 𝑧 → ∃! 𝑣 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ) ) | |
| 2 | 19.23v | ⊢ ( ∀ 𝑡 ( 𝑡 ∈ 𝑧 → ∃! 𝑣 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ) ↔ ( ∃ 𝑡 𝑡 ∈ 𝑧 → ∃! 𝑣 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ) ) | |
| 3 | 1 2 | bitri | ⊢ ( ∀ 𝑡 ∈ 𝑧 ∃! 𝑣 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ↔ ( ∃ 𝑡 𝑡 ∈ 𝑧 → ∃! 𝑣 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ) ) |
| 4 | biidd | ⊢ ( 𝑤 = 𝑡 → ( ∃! 𝑣 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ↔ ∃! 𝑣 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ) ) | |
| 5 | 4 | cbvralvw | ⊢ ( ∀ 𝑤 ∈ 𝑧 ∃! 𝑣 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ↔ ∀ 𝑡 ∈ 𝑧 ∃! 𝑣 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ) |
| 6 | n0 | ⊢ ( 𝑧 ≠ ∅ ↔ ∃ 𝑡 𝑡 ∈ 𝑧 ) | |
| 7 | elequ2 | ⊢ ( 𝑣 = 𝑢 → ( 𝑧 ∈ 𝑣 ↔ 𝑧 ∈ 𝑢 ) ) | |
| 8 | elequ2 | ⊢ ( 𝑣 = 𝑢 → ( 𝑤 ∈ 𝑣 ↔ 𝑤 ∈ 𝑢 ) ) | |
| 9 | 7 8 | anbi12d | ⊢ ( 𝑣 = 𝑢 → ( ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ ( 𝑧 ∈ 𝑢 ∧ 𝑤 ∈ 𝑢 ) ) ) |
| 10 | 9 | cbvrexvw | ⊢ ( ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑤 ∈ 𝑢 ) ) |
| 11 | 10 | reubii | ⊢ ( ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ ∃! 𝑤 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑤 ∈ 𝑢 ) ) |
| 12 | elequ1 | ⊢ ( 𝑤 = 𝑣 → ( 𝑤 ∈ 𝑢 ↔ 𝑣 ∈ 𝑢 ) ) | |
| 13 | 12 | anbi2d | ⊢ ( 𝑤 = 𝑣 → ( ( 𝑧 ∈ 𝑢 ∧ 𝑤 ∈ 𝑢 ) ↔ ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ) ) |
| 14 | 13 | rexbidv | ⊢ ( 𝑤 = 𝑣 → ( ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑤 ∈ 𝑢 ) ↔ ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ) ) |
| 15 | 14 | cbvreuvw | ⊢ ( ∃! 𝑤 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑤 ∈ 𝑢 ) ↔ ∃! 𝑣 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ) |
| 16 | 11 15 | bitri | ⊢ ( ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ↔ ∃! 𝑣 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ) |
| 17 | 6 16 | imbi12i | ⊢ ( ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ↔ ( ∃ 𝑡 𝑡 ∈ 𝑧 → ∃! 𝑣 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ) ) |
| 18 | 3 5 17 | 3bitr4i | ⊢ ( ∀ 𝑤 ∈ 𝑧 ∃! 𝑣 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ↔ ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 19 | 18 | ralbii | ⊢ ( ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑧 ∃! 𝑣 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ↔ ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |
| 20 | 19 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑧 ∃! 𝑣 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ↔ ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝑧 ≠ ∅ → ∃! 𝑤 ∈ 𝑧 ∃ 𝑣 ∈ 𝑦 ( 𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣 ) ) ) |