This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent of Axiom of Choice. Using the Boundedness Axiom bnd2 , we derive this strong version of ac6 that doesn't require B to be a set. (Contributed by NM, 4-Feb-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ac6s.1 | |- A e. _V |
|
| ac6s.2 | |- ( y = ( f ` x ) -> ( ph <-> ps ) ) |
||
| Assertion | ac6s | |- ( A. x e. A E. y e. B ph -> E. f ( f : A --> B /\ A. x e. A ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ac6s.1 | |- A e. _V |
|
| 2 | ac6s.2 | |- ( y = ( f ` x ) -> ( ph <-> ps ) ) |
|
| 3 | 1 | bnd2 | |- ( A. x e. A E. y e. B ph -> E. z ( z C_ B /\ A. x e. A E. y e. z ph ) ) |
| 4 | vex | |- z e. _V |
|
| 5 | 1 4 2 | ac6 | |- ( A. x e. A E. y e. z ph -> E. f ( f : A --> z /\ A. x e. A ps ) ) |
| 6 | 5 | anim2i | |- ( ( z C_ B /\ A. x e. A E. y e. z ph ) -> ( z C_ B /\ E. f ( f : A --> z /\ A. x e. A ps ) ) ) |
| 7 | 6 | eximi | |- ( E. z ( z C_ B /\ A. x e. A E. y e. z ph ) -> E. z ( z C_ B /\ E. f ( f : A --> z /\ A. x e. A ps ) ) ) |
| 8 | fss | |- ( ( f : A --> z /\ z C_ B ) -> f : A --> B ) |
|
| 9 | 8 | expcom | |- ( z C_ B -> ( f : A --> z -> f : A --> B ) ) |
| 10 | 9 | anim1d | |- ( z C_ B -> ( ( f : A --> z /\ A. x e. A ps ) -> ( f : A --> B /\ A. x e. A ps ) ) ) |
| 11 | 10 | eximdv | |- ( z C_ B -> ( E. f ( f : A --> z /\ A. x e. A ps ) -> E. f ( f : A --> B /\ A. x e. A ps ) ) ) |
| 12 | 11 | imp | |- ( ( z C_ B /\ E. f ( f : A --> z /\ A. x e. A ps ) ) -> E. f ( f : A --> B /\ A. x e. A ps ) ) |
| 13 | 12 | exlimiv | |- ( E. z ( z C_ B /\ E. f ( f : A --> z /\ A. x e. A ps ) ) -> E. f ( f : A --> B /\ A. x e. A ps ) ) |
| 14 | 3 7 13 | 3syl | |- ( A. x e. A E. y e. B ph -> E. f ( f : A --> B /\ A. x e. A ps ) ) |