This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of absolute values on a ring. An absolute value is a generalization of the usual absolute value function df-abs to arbitrary rings. (Contributed by Mario Carneiro, 8-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-abv | ⊢ AbsVal = ( 𝑟 ∈ Ring ↦ { 𝑓 ∈ ( ( 0 [,) +∞ ) ↑m ( Base ‘ 𝑟 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑟 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cabv | ⊢ AbsVal | |
| 1 | vr | ⊢ 𝑟 | |
| 2 | crg | ⊢ Ring | |
| 3 | vf | ⊢ 𝑓 | |
| 4 | cc0 | ⊢ 0 | |
| 5 | cico | ⊢ [,) | |
| 6 | cpnf | ⊢ +∞ | |
| 7 | 4 6 5 | co | ⊢ ( 0 [,) +∞ ) |
| 8 | cmap | ⊢ ↑m | |
| 9 | cbs | ⊢ Base | |
| 10 | 1 | cv | ⊢ 𝑟 |
| 11 | 10 9 | cfv | ⊢ ( Base ‘ 𝑟 ) |
| 12 | 7 11 8 | co | ⊢ ( ( 0 [,) +∞ ) ↑m ( Base ‘ 𝑟 ) ) |
| 13 | vx | ⊢ 𝑥 | |
| 14 | 3 | cv | ⊢ 𝑓 |
| 15 | 13 | cv | ⊢ 𝑥 |
| 16 | 15 14 | cfv | ⊢ ( 𝑓 ‘ 𝑥 ) |
| 17 | 16 4 | wceq | ⊢ ( 𝑓 ‘ 𝑥 ) = 0 |
| 18 | c0g | ⊢ 0g | |
| 19 | 10 18 | cfv | ⊢ ( 0g ‘ 𝑟 ) |
| 20 | 15 19 | wceq | ⊢ 𝑥 = ( 0g ‘ 𝑟 ) |
| 21 | 17 20 | wb | ⊢ ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑟 ) ) |
| 22 | vy | ⊢ 𝑦 | |
| 23 | cmulr | ⊢ .r | |
| 24 | 10 23 | cfv | ⊢ ( .r ‘ 𝑟 ) |
| 25 | 22 | cv | ⊢ 𝑦 |
| 26 | 15 25 24 | co | ⊢ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) |
| 27 | 26 14 | cfv | ⊢ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) |
| 28 | cmul | ⊢ · | |
| 29 | 25 14 | cfv | ⊢ ( 𝑓 ‘ 𝑦 ) |
| 30 | 16 29 28 | co | ⊢ ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) |
| 31 | 27 30 | wceq | ⊢ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) |
| 32 | cplusg | ⊢ +g | |
| 33 | 10 32 | cfv | ⊢ ( +g ‘ 𝑟 ) |
| 34 | 15 25 33 | co | ⊢ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) |
| 35 | 34 14 | cfv | ⊢ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) |
| 36 | cle | ⊢ ≤ | |
| 37 | caddc | ⊢ + | |
| 38 | 16 29 37 | co | ⊢ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) |
| 39 | 35 38 36 | wbr | ⊢ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) |
| 40 | 31 39 | wa | ⊢ ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) |
| 41 | 40 22 11 | wral | ⊢ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) |
| 42 | 21 41 | wa | ⊢ ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑟 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 43 | 42 13 11 | wral | ⊢ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑟 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 44 | 43 3 12 | crab | ⊢ { 𝑓 ∈ ( ( 0 [,) +∞ ) ↑m ( Base ‘ 𝑟 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑟 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) } |
| 45 | 1 2 44 | cmpt | ⊢ ( 𝑟 ∈ Ring ↦ { 𝑓 ∈ ( ( 0 [,) +∞ ) ↑m ( Base ‘ 𝑟 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑟 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) } ) |
| 46 | 0 45 | wceq | ⊢ AbsVal = ( 𝑟 ∈ Ring ↦ { 𝑓 ∈ ( ( 0 [,) +∞ ) ↑m ( Base ‘ 𝑟 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑟 ) ( ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ 𝑥 = ( 0g ‘ 𝑟 ) ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) · ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) ≤ ( ( 𝑓 ‘ 𝑥 ) + ( 𝑓 ‘ 𝑦 ) ) ) ) } ) |