This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value of one is one in a non-trivial ring. (Contributed by Mario Carneiro, 8-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abv0.a | |- A = ( AbsVal ` R ) |
|
| abv1.p | |- .1. = ( 1r ` R ) |
||
| abv1z.z | |- .0. = ( 0g ` R ) |
||
| Assertion | abv1z | |- ( ( F e. A /\ .1. =/= .0. ) -> ( F ` .1. ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abv0.a | |- A = ( AbsVal ` R ) |
|
| 2 | abv1.p | |- .1. = ( 1r ` R ) |
|
| 3 | abv1z.z | |- .0. = ( 0g ` R ) |
|
| 4 | 1 | abvrcl | |- ( F e. A -> R e. Ring ) |
| 5 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 6 | 5 2 | ringidcl | |- ( R e. Ring -> .1. e. ( Base ` R ) ) |
| 7 | 4 6 | syl | |- ( F e. A -> .1. e. ( Base ` R ) ) |
| 8 | 1 5 | abvcl | |- ( ( F e. A /\ .1. e. ( Base ` R ) ) -> ( F ` .1. ) e. RR ) |
| 9 | 7 8 | mpdan | |- ( F e. A -> ( F ` .1. ) e. RR ) |
| 10 | 9 | adantr | |- ( ( F e. A /\ .1. =/= .0. ) -> ( F ` .1. ) e. RR ) |
| 11 | 10 | recnd | |- ( ( F e. A /\ .1. =/= .0. ) -> ( F ` .1. ) e. CC ) |
| 12 | simpl | |- ( ( F e. A /\ .1. =/= .0. ) -> F e. A ) |
|
| 13 | 7 | adantr | |- ( ( F e. A /\ .1. =/= .0. ) -> .1. e. ( Base ` R ) ) |
| 14 | simpr | |- ( ( F e. A /\ .1. =/= .0. ) -> .1. =/= .0. ) |
|
| 15 | 1 5 3 | abvne0 | |- ( ( F e. A /\ .1. e. ( Base ` R ) /\ .1. =/= .0. ) -> ( F ` .1. ) =/= 0 ) |
| 16 | 12 13 14 15 | syl3anc | |- ( ( F e. A /\ .1. =/= .0. ) -> ( F ` .1. ) =/= 0 ) |
| 17 | 11 11 16 | divcan3d | |- ( ( F e. A /\ .1. =/= .0. ) -> ( ( ( F ` .1. ) x. ( F ` .1. ) ) / ( F ` .1. ) ) = ( F ` .1. ) ) |
| 18 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 19 | 5 18 2 | ringlidm | |- ( ( R e. Ring /\ .1. e. ( Base ` R ) ) -> ( .1. ( .r ` R ) .1. ) = .1. ) |
| 20 | 4 13 19 | syl2an2r | |- ( ( F e. A /\ .1. =/= .0. ) -> ( .1. ( .r ` R ) .1. ) = .1. ) |
| 21 | 20 | fveq2d | |- ( ( F e. A /\ .1. =/= .0. ) -> ( F ` ( .1. ( .r ` R ) .1. ) ) = ( F ` .1. ) ) |
| 22 | 1 5 18 | abvmul | |- ( ( F e. A /\ .1. e. ( Base ` R ) /\ .1. e. ( Base ` R ) ) -> ( F ` ( .1. ( .r ` R ) .1. ) ) = ( ( F ` .1. ) x. ( F ` .1. ) ) ) |
| 23 | 12 13 13 22 | syl3anc | |- ( ( F e. A /\ .1. =/= .0. ) -> ( F ` ( .1. ( .r ` R ) .1. ) ) = ( ( F ` .1. ) x. ( F ` .1. ) ) ) |
| 24 | 21 23 | eqtr3d | |- ( ( F e. A /\ .1. =/= .0. ) -> ( F ` .1. ) = ( ( F ` .1. ) x. ( F ` .1. ) ) ) |
| 25 | 24 | oveq1d | |- ( ( F e. A /\ .1. =/= .0. ) -> ( ( F ` .1. ) / ( F ` .1. ) ) = ( ( ( F ` .1. ) x. ( F ` .1. ) ) / ( F ` .1. ) ) ) |
| 26 | 11 16 | dividd | |- ( ( F e. A /\ .1. =/= .0. ) -> ( ( F ` .1. ) / ( F ` .1. ) ) = 1 ) |
| 27 | 25 26 | eqtr3d | |- ( ( F e. A /\ .1. =/= .0. ) -> ( ( ( F ` .1. ) x. ( F ` .1. ) ) / ( F ` .1. ) ) = 1 ) |
| 28 | 17 27 | eqtr3d | |- ( ( F e. A /\ .1. =/= .0. ) -> ( F ` .1. ) = 1 ) |