This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of sets verifying a property is the universal class if and only if that property is a tautology. The reverse implication ( bj-abv ) requires fewer axioms. (Contributed by BJ, 19-Mar-2021) Avoid df-clel , ax-8 . (Revised by GG, 30-Aug-2024) (Proof shortened by BJ, 30-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abv | ⊢ ( { 𝑥 ∣ 𝜑 } = V ↔ ∀ 𝑥 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq | ⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ⊤ } ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊤ } ) ) | |
| 2 | vextru | ⊢ 𝑦 ∈ { 𝑥 ∣ ⊤ } | |
| 3 | 2 | tbt | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊤ } ) ) |
| 4 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 5 | 3 4 | bitr3i | ⊢ ( ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊤ } ) ↔ [ 𝑦 / 𝑥 ] 𝜑 ) |
| 6 | 5 | albii | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝑦 ∈ { 𝑥 ∣ ⊤ } ) ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) |
| 7 | 1 6 | bitri | ⊢ ( { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ⊤ } ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) |
| 8 | dfv2 | ⊢ V = { 𝑥 ∣ ⊤ } | |
| 9 | 8 | eqeq2i | ⊢ ( { 𝑥 ∣ 𝜑 } = V ↔ { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ⊤ } ) |
| 10 | sb8v | ⊢ ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 11 | 7 9 10 | 3bitr4i | ⊢ ( { 𝑥 ∣ 𝜑 } = V ↔ ∀ 𝑥 𝜑 ) |