This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The class of sets verifying a property is the universal class if and only if that property is a tautology. The reverse implication ( bj-abv ) requires fewer axioms. (Contributed by BJ, 19-Mar-2021) Avoid df-clel , ax-8 . (Revised by GG, 30-Aug-2024) (Proof shortened by BJ, 30-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abv | |- ( { x | ph } = _V <-> A. x ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq | |- ( { x | ph } = { x | T. } <-> A. y ( y e. { x | ph } <-> y e. { x | T. } ) ) |
|
| 2 | vextru | |- y e. { x | T. } |
|
| 3 | 2 | tbt | |- ( y e. { x | ph } <-> ( y e. { x | ph } <-> y e. { x | T. } ) ) |
| 4 | df-clab | |- ( y e. { x | ph } <-> [ y / x ] ph ) |
|
| 5 | 3 4 | bitr3i | |- ( ( y e. { x | ph } <-> y e. { x | T. } ) <-> [ y / x ] ph ) |
| 6 | 5 | albii | |- ( A. y ( y e. { x | ph } <-> y e. { x | T. } ) <-> A. y [ y / x ] ph ) |
| 7 | 1 6 | bitri | |- ( { x | ph } = { x | T. } <-> A. y [ y / x ] ph ) |
| 8 | dfv2 | |- _V = { x | T. } |
|
| 9 | 8 | eqeq2i | |- ( { x | ph } = _V <-> { x | ph } = { x | T. } ) |
| 10 | sb8v | |- ( A. x ph <-> A. y [ y / x ] ph ) |
|
| 11 | 7 9 10 | 3bitr4i | |- ( { x | ph } = _V <-> A. x ph ) |