This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absolute value of a real number. (Contributed by NM, 17-Mar-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absre | ⊢ ( 𝐴 ∈ ℝ → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 2 | absval | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ ℝ → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) |
| 4 | 1 | sqvald | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) |
| 5 | cjre | ⊢ ( 𝐴 ∈ ℝ → ( ∗ ‘ 𝐴 ) = 𝐴 ) | |
| 6 | 5 | oveq2d | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = ( 𝐴 · 𝐴 ) ) |
| 7 | 4 6 | eqtr4d | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ↑ 2 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
| 8 | 7 | fveq2d | ⊢ ( 𝐴 ∈ ℝ → ( √ ‘ ( 𝐴 ↑ 2 ) ) = ( √ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) |
| 9 | 3 8 | eqtr4d | ⊢ ( 𝐴 ∈ ℝ → ( abs ‘ 𝐴 ) = ( √ ‘ ( 𝐴 ↑ 2 ) ) ) |