This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Square of the absolute value of a number that has been decomposed into real and imaginary parts. (Contributed by NM, 1-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absreimsq | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 2 | ax-icn | ⊢ i ∈ ℂ | |
| 3 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 4 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · 𝐵 ) ∈ ℂ ) | |
| 5 | 2 3 4 | sylancr | ⊢ ( 𝐵 ∈ ℝ → ( i · 𝐵 ) ∈ ℂ ) |
| 6 | addcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( i · 𝐵 ) ∈ ℂ ) → ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ ) | |
| 7 | 1 5 6 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ ) |
| 8 | absvalsq2 | ⊢ ( ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ → ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) = ( ( ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) + ( ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) = ( ( ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) + ( ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) ) ) |
| 10 | crre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) = 𝐴 ) | |
| 11 | 10 | oveq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
| 12 | crim | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) = 𝐵 ) | |
| 13 | 12 | oveq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) = ( 𝐵 ↑ 2 ) ) |
| 14 | 11 13 | oveq12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( ℜ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) + ( ( ℑ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) |
| 15 | 9 14 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( abs ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) |