This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex number times its conjugate is real. (Contributed by NM, 26-Mar-2005) (Revised by Mario Carneiro, 14-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cjmulrcl | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjcj | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) = 𝐴 ) | |
| 2 | 1 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) = ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) |
| 3 | cjcl | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) | |
| 4 | cjmul | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ∗ ‘ 𝐴 ) ∈ ℂ ) → ( ∗ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) = ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) ) | |
| 5 | 3 4 | mpdan | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) = ( ( ∗ ‘ 𝐴 ) · ( ∗ ‘ ( ∗ ‘ 𝐴 ) ) ) ) |
| 6 | mulcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ∗ ‘ 𝐴 ) ∈ ℂ ) → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) | |
| 7 | 3 6 | mpdan | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = ( ( ∗ ‘ 𝐴 ) · 𝐴 ) ) |
| 8 | 2 5 7 | 3eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
| 9 | mulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ∗ ‘ 𝐴 ) ∈ ℂ ) → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) | |
| 10 | 3 9 | mpdan | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) |
| 11 | cjreb | ⊢ ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℂ → ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ↔ ( ∗ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ↔ ( ∗ ‘ ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) ) |
| 13 | 8 12 | mpbird | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ∈ ℝ ) |