This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative subtraction law for Abelian groups. (Contributed by NM, 31-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablsubadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| ablsubadd.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| ablsubadd.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | ablsub4 | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) − ( 𝑍 + 𝑊 ) ) = ( ( 𝑋 − 𝑍 ) + ( 𝑌 − 𝑊 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablsubadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | ablsubadd.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | ablsubadd.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) |
| 6 | simp2l | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 7 | simp2r | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 8 | 1 2 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 9 | 5 6 7 8 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 10 | simp3l | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) | |
| 11 | simp3r | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝑊 ∈ 𝐵 ) | |
| 12 | 1 2 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑍 + 𝑊 ) ∈ 𝐵 ) |
| 13 | 5 10 11 12 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( 𝑍 + 𝑊 ) ∈ 𝐵 ) |
| 14 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 15 | 1 2 14 3 | grpsubval | ⊢ ( ( ( 𝑋 + 𝑌 ) ∈ 𝐵 ∧ ( 𝑍 + 𝑊 ) ∈ 𝐵 ) → ( ( 𝑋 + 𝑌 ) − ( 𝑍 + 𝑊 ) ) = ( ( 𝑋 + 𝑌 ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑍 + 𝑊 ) ) ) ) |
| 16 | 9 13 15 | syl2anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) − ( 𝑍 + 𝑊 ) ) = ( ( 𝑋 + 𝑌 ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑍 + 𝑊 ) ) ) ) |
| 17 | ablcmn | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ CMnd ) | |
| 18 | 17 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝐺 ∈ CMnd ) |
| 19 | simp2 | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) | |
| 20 | 1 14 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 21 | 5 10 20 | syl2anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 22 | 1 14 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑊 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑊 ) ∈ 𝐵 ) |
| 23 | 5 11 22 | syl2anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑊 ) ∈ 𝐵 ) |
| 24 | 1 2 | cmn4 | ⊢ ( ( 𝐺 ∈ CMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑊 ) ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) + ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑊 ) ) ) = ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) + ( 𝑌 + ( ( invg ‘ 𝐺 ) ‘ 𝑊 ) ) ) ) |
| 25 | 18 19 21 23 24 | syl112anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) + ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑊 ) ) ) = ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) + ( 𝑌 + ( ( invg ‘ 𝐺 ) ‘ 𝑊 ) ) ) ) |
| 26 | simp1 | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝐺 ∈ Abel ) | |
| 27 | 1 2 14 | ablinvadd | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑍 + 𝑊 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑊 ) ) ) |
| 28 | 26 10 11 27 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝑍 + 𝑊 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑊 ) ) ) |
| 29 | 28 | oveq2d | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑍 + 𝑊 ) ) ) = ( ( 𝑋 + 𝑌 ) + ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( ( invg ‘ 𝐺 ) ‘ 𝑊 ) ) ) ) |
| 30 | 1 2 14 3 | grpsubval | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 − 𝑍 ) = ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
| 31 | 6 10 30 | syl2anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( 𝑋 − 𝑍 ) = ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) ) |
| 32 | 1 2 14 3 | grpsubval | ⊢ ( ( 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑌 − 𝑊 ) = ( 𝑌 + ( ( invg ‘ 𝐺 ) ‘ 𝑊 ) ) ) |
| 33 | 7 11 32 | syl2anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( 𝑌 − 𝑊 ) = ( 𝑌 + ( ( invg ‘ 𝐺 ) ‘ 𝑊 ) ) ) |
| 34 | 31 33 | oveq12d | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑍 ) + ( 𝑌 − 𝑊 ) ) = ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ) + ( 𝑌 + ( ( invg ‘ 𝐺 ) ‘ 𝑊 ) ) ) ) |
| 35 | 25 29 34 | 3eqtr4d | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑍 + 𝑊 ) ) ) = ( ( 𝑋 − 𝑍 ) + ( 𝑌 − 𝑊 ) ) ) |
| 36 | 16 35 | eqtrd | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) − ( 𝑍 + 𝑊 ) ) = ( ( 𝑋 − 𝑍 ) + ( 𝑌 − 𝑊 ) ) ) |