This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law for Abelian groups. (Contributed by NM, 26-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ablcom.1 | |- X = ran G |
|
| Assertion | ablo4 | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( ( A G B ) G ( C G D ) ) = ( ( A G C ) G ( B G D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablcom.1 | |- X = ran G |
|
| 2 | simprll | |- ( ( G e. AbelOp /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> A e. X ) |
|
| 3 | simprlr | |- ( ( G e. AbelOp /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> B e. X ) |
|
| 4 | simprrl | |- ( ( G e. AbelOp /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> C e. X ) |
|
| 5 | 2 3 4 | 3jca | |- ( ( G e. AbelOp /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> ( A e. X /\ B e. X /\ C e. X ) ) |
| 6 | 1 | ablo32 | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) G C ) = ( ( A G C ) G B ) ) |
| 7 | 5 6 | syldan | |- ( ( G e. AbelOp /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> ( ( A G B ) G C ) = ( ( A G C ) G B ) ) |
| 8 | 7 | oveq1d | |- ( ( G e. AbelOp /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> ( ( ( A G B ) G C ) G D ) = ( ( ( A G C ) G B ) G D ) ) |
| 9 | ablogrpo | |- ( G e. AbelOp -> G e. GrpOp ) |
|
| 10 | 1 | grpocl | |- ( ( G e. GrpOp /\ A e. X /\ B e. X ) -> ( A G B ) e. X ) |
| 11 | 10 | 3expb | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X ) ) -> ( A G B ) e. X ) |
| 12 | 11 | adantrr | |- ( ( G e. GrpOp /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> ( A G B ) e. X ) |
| 13 | simprrl | |- ( ( G e. GrpOp /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> C e. X ) |
|
| 14 | simprrr | |- ( ( G e. GrpOp /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> D e. X ) |
|
| 15 | 12 13 14 | 3jca | |- ( ( G e. GrpOp /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> ( ( A G B ) e. X /\ C e. X /\ D e. X ) ) |
| 16 | 1 | grpoass | |- ( ( G e. GrpOp /\ ( ( A G B ) e. X /\ C e. X /\ D e. X ) ) -> ( ( ( A G B ) G C ) G D ) = ( ( A G B ) G ( C G D ) ) ) |
| 17 | 15 16 | syldan | |- ( ( G e. GrpOp /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> ( ( ( A G B ) G C ) G D ) = ( ( A G B ) G ( C G D ) ) ) |
| 18 | 9 17 | sylan | |- ( ( G e. AbelOp /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> ( ( ( A G B ) G C ) G D ) = ( ( A G B ) G ( C G D ) ) ) |
| 19 | 1 | grpocl | |- ( ( G e. GrpOp /\ A e. X /\ C e. X ) -> ( A G C ) e. X ) |
| 20 | 19 | 3expb | |- ( ( G e. GrpOp /\ ( A e. X /\ C e. X ) ) -> ( A G C ) e. X ) |
| 21 | 20 | adantrlr | |- ( ( G e. GrpOp /\ ( ( A e. X /\ B e. X ) /\ C e. X ) ) -> ( A G C ) e. X ) |
| 22 | 21 | adantrrr | |- ( ( G e. GrpOp /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> ( A G C ) e. X ) |
| 23 | simprlr | |- ( ( G e. GrpOp /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> B e. X ) |
|
| 24 | 22 23 14 | 3jca | |- ( ( G e. GrpOp /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> ( ( A G C ) e. X /\ B e. X /\ D e. X ) ) |
| 25 | 1 | grpoass | |- ( ( G e. GrpOp /\ ( ( A G C ) e. X /\ B e. X /\ D e. X ) ) -> ( ( ( A G C ) G B ) G D ) = ( ( A G C ) G ( B G D ) ) ) |
| 26 | 24 25 | syldan | |- ( ( G e. GrpOp /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> ( ( ( A G C ) G B ) G D ) = ( ( A G C ) G ( B G D ) ) ) |
| 27 | 9 26 | sylan | |- ( ( G e. AbelOp /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> ( ( ( A G C ) G B ) G D ) = ( ( A G C ) G ( B G D ) ) ) |
| 28 | 8 18 27 | 3eqtr3d | |- ( ( G e. AbelOp /\ ( ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) ) -> ( ( A G B ) G ( C G D ) ) = ( ( A G C ) G ( B G D ) ) ) |
| 29 | 28 | 3impb | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X ) /\ ( C e. X /\ D e. X ) ) -> ( ( A G B ) G ( C G D ) ) = ( ( A G C ) G ( B G D ) ) ) |