This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law for Abelian groups. (Contributed by NM, 26-Apr-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ablcom.1 | |- X = ran G |
|
| Assertion | ablo32 | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) G C ) = ( ( A G C ) G B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablcom.1 | |- X = ran G |
|
| 2 | 1 | ablocom | |- ( ( G e. AbelOp /\ B e. X /\ C e. X ) -> ( B G C ) = ( C G B ) ) |
| 3 | 2 | 3adant3r1 | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B G C ) = ( C G B ) ) |
| 4 | 3 | oveq2d | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A G ( B G C ) ) = ( A G ( C G B ) ) ) |
| 5 | ablogrpo | |- ( G e. AbelOp -> G e. GrpOp ) |
|
| 6 | 1 | grpoass | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) G C ) = ( A G ( B G C ) ) ) |
| 7 | 5 6 | sylan | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) G C ) = ( A G ( B G C ) ) ) |
| 8 | 3ancomb | |- ( ( A e. X /\ B e. X /\ C e. X ) <-> ( A e. X /\ C e. X /\ B e. X ) ) |
|
| 9 | 1 | grpoass | |- ( ( G e. GrpOp /\ ( A e. X /\ C e. X /\ B e. X ) ) -> ( ( A G C ) G B ) = ( A G ( C G B ) ) ) |
| 10 | 8 9 | sylan2b | |- ( ( G e. GrpOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G C ) G B ) = ( A G ( C G B ) ) ) |
| 11 | 5 10 | sylan | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G C ) G B ) = ( A G ( C G B ) ) ) |
| 12 | 4 7 11 | 3eqtr4d | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A G B ) G C ) = ( ( A G C ) G B ) ) |