This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for subtraction. (Contributed by NM, 4-Sep-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnncan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − ( 𝐵 − 𝐶 ) ) − 𝐶 ) = ( 𝐴 − 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 − 𝐶 ) ∈ ℂ ) | |
| 2 | 1 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 − 𝐶 ) ∈ ℂ ) |
| 3 | subsub4 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 − 𝐶 ) ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − ( 𝐵 − 𝐶 ) ) − 𝐶 ) = ( 𝐴 − ( ( 𝐵 − 𝐶 ) + 𝐶 ) ) ) | |
| 4 | 2 3 | syld3an2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − ( 𝐵 − 𝐶 ) ) − 𝐶 ) = ( 𝐴 − ( ( 𝐵 − 𝐶 ) + 𝐶 ) ) ) |
| 5 | npcan | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐵 − 𝐶 ) + 𝐶 ) = 𝐵 ) | |
| 6 | 5 | oveq2d | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 − ( ( 𝐵 − 𝐶 ) + 𝐶 ) ) = ( 𝐴 − 𝐵 ) ) |
| 7 | 6 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 − ( ( 𝐵 − 𝐶 ) + 𝐶 ) ) = ( 𝐴 − 𝐵 ) ) |
| 8 | 4 7 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 − ( 𝐵 − 𝐶 ) ) − 𝐶 ) = ( 𝐴 − 𝐵 ) ) |