This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cancellation law for Abelian groups. (Contributed by NM, 23-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablsubadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| ablsubadd.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| ablsubadd.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | ablpncan3 | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 + ( 𝑌 − 𝑋 ) ) = 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablsubadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | ablsubadd.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | ablsubadd.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | simpl | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐺 ∈ Abel ) | |
| 5 | simprl | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 6 | ablgrp | ⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) |
| 8 | simprr | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 9 | 1 3 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑌 − 𝑋 ) ∈ 𝐵 ) |
| 10 | 7 8 5 9 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑌 − 𝑋 ) ∈ 𝐵 ) |
| 11 | 1 2 | ablcom | ⊢ ( ( 𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑌 − 𝑋 ) ∈ 𝐵 ) → ( 𝑋 + ( 𝑌 − 𝑋 ) ) = ( ( 𝑌 − 𝑋 ) + 𝑋 ) ) |
| 12 | 4 5 10 11 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 + ( 𝑌 − 𝑋 ) ) = ( ( 𝑌 − 𝑋 ) + 𝑋 ) ) |
| 13 | 1 2 3 | grpnpcan | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑌 − 𝑋 ) + 𝑋 ) = 𝑌 ) |
| 14 | 7 8 5 13 | syl3anc | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑌 − 𝑋 ) + 𝑋 ) = 𝑌 ) |
| 15 | 12 14 | eqtrd | ⊢ ( ( 𝐺 ∈ Abel ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 + ( 𝑌 − 𝑋 ) ) = 𝑌 ) |