This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 4sq . Sufficient condition to be in S . (Contributed by Mario Carneiro, 14-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 4sq.1 | ⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } | |
| Assertion | 4sqlem3 | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ ) ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sq.1 | ⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } | |
| 2 | eqid | ⊢ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) | |
| 3 | oveq1 | ⊢ ( 𝑐 = 𝐶 → ( 𝑐 ↑ 2 ) = ( 𝐶 ↑ 2 ) ) | |
| 4 | 3 | oveq1d | ⊢ ( 𝑐 = 𝐶 → ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) = ( ( 𝐶 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) |
| 5 | 4 | oveq2d | ⊢ ( 𝑐 = 𝐶 → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) |
| 6 | 5 | eqeq2d | ⊢ ( 𝑐 = 𝐶 → ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ↔ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) ) |
| 7 | oveq1 | ⊢ ( 𝑑 = 𝐷 → ( 𝑑 ↑ 2 ) = ( 𝐷 ↑ 2 ) ) | |
| 8 | 7 | oveq2d | ⊢ ( 𝑑 = 𝐷 → ( ( 𝐶 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) = ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) |
| 9 | 8 | oveq2d | ⊢ ( 𝑑 = 𝐷 → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) |
| 10 | 9 | eqeq2d | ⊢ ( 𝑑 = 𝐷 → ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ↔ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) ) |
| 11 | 6 10 | rspc2ev | ⊢ ( ( 𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ) → ∃ 𝑐 ∈ ℤ ∃ 𝑑 ∈ ℤ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) |
| 12 | 2 11 | mp3an3 | ⊢ ( ( 𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ ) → ∃ 𝑐 ∈ ℤ ∃ 𝑑 ∈ ℤ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) |
| 13 | oveq1 | ⊢ ( 𝑎 = 𝐴 → ( 𝑎 ↑ 2 ) = ( 𝐴 ↑ 2 ) ) | |
| 14 | 13 | oveq1d | ⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) ) |
| 15 | 14 | oveq1d | ⊢ ( 𝑎 = 𝐴 → ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) |
| 16 | 15 | eqeq2d | ⊢ ( 𝑎 = 𝐴 → ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ↔ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) ) |
| 17 | 16 | 2rexbidv | ⊢ ( 𝑎 = 𝐴 → ( ∃ 𝑐 ∈ ℤ ∃ 𝑑 ∈ ℤ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ↔ ∃ 𝑐 ∈ ℤ ∃ 𝑑 ∈ ℤ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) ) |
| 18 | oveq1 | ⊢ ( 𝑏 = 𝐵 → ( 𝑏 ↑ 2 ) = ( 𝐵 ↑ 2 ) ) | |
| 19 | 18 | oveq2d | ⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) |
| 20 | 19 | oveq1d | ⊢ ( 𝑏 = 𝐵 → ( ( ( 𝐴 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) |
| 21 | 20 | eqeq2d | ⊢ ( 𝑏 = 𝐵 → ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ↔ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) ) |
| 22 | 21 | 2rexbidv | ⊢ ( 𝑏 = 𝐵 → ( ∃ 𝑐 ∈ ℤ ∃ 𝑑 ∈ ℤ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ↔ ∃ 𝑐 ∈ ℤ ∃ 𝑑 ∈ ℤ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) ) |
| 23 | 17 22 | rspc2ev | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ∃ 𝑐 ∈ ℤ ∃ 𝑑 ∈ ℤ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) → ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ∃ 𝑐 ∈ ℤ ∃ 𝑑 ∈ ℤ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) |
| 24 | 23 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ∃ 𝑐 ∈ ℤ ∃ 𝑑 ∈ ℤ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) → ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ∃ 𝑐 ∈ ℤ ∃ 𝑑 ∈ ℤ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) |
| 25 | 1 | 4sqlem2 | ⊢ ( ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ∈ 𝑆 ↔ ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ℤ ∃ 𝑐 ∈ ℤ ∃ 𝑑 ∈ ℤ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( 𝑎 ↑ 2 ) + ( 𝑏 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) |
| 26 | 24 25 | sylibr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ∃ 𝑐 ∈ ℤ ∃ 𝑑 ∈ ℤ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝑐 ↑ 2 ) + ( 𝑑 ↑ 2 ) ) ) ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ∈ 𝑆 ) |
| 27 | 12 26 | sylan2 | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ ) ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) + ( ( 𝐶 ↑ 2 ) + ( 𝐷 ↑ 2 ) ) ) ∈ 𝑆 ) |