This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 10 for 3wlkd . (Contributed by Alexander van der Vekens, 12-Nov-2017) (Revised by AV, 7-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3wlkd.p | ⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 | |
| 3wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 𝐾 𝐿 ”〉 | ||
| 3wlkd.s | ⊢ ( 𝜑 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ) | ||
| 3wlkd.n | ⊢ ( 𝜑 → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) | ||
| 3wlkd.e | ⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ 𝐿 ) ) ) | ||
| Assertion | 3wlkdlem10 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3wlkd.p | ⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 | |
| 2 | 3wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 𝐾 𝐿 ”〉 | |
| 3 | 3wlkd.s | ⊢ ( 𝜑 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ) | |
| 4 | 3wlkd.n | ⊢ ( 𝜑 → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) | |
| 5 | 3wlkd.e | ⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ 𝐿 ) ) ) | |
| 6 | 1 2 3 4 5 | 3wlkdlem9 | ⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 2 ) ) ) ) |
| 7 | 1 2 3 | 3wlkdlem3 | ⊢ ( 𝜑 → ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) ) |
| 8 | preq12 | ⊢ ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } = { 𝐴 , 𝐵 } ) | |
| 9 | 8 | adantr | ⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } = { 𝐴 , 𝐵 } ) |
| 10 | 9 | sseq1d | ⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ↔ { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ) ) |
| 11 | simplr | ⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( 𝑃 ‘ 1 ) = 𝐵 ) | |
| 12 | simprl | ⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( 𝑃 ‘ 2 ) = 𝐶 ) | |
| 13 | 11 12 | preq12d | ⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } = { 𝐵 , 𝐶 } ) |
| 14 | 13 | sseq1d | ⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ↔ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ) ) |
| 15 | preq12 | ⊢ ( ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) → { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } = { 𝐶 , 𝐷 } ) | |
| 16 | 15 | adantl | ⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } = { 𝐶 , 𝐷 } ) |
| 17 | 16 | sseq1d | ⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 2 ) ) ↔ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 2 ) ) ) ) |
| 18 | 10 14 17 | 3anbi123d | ⊢ ( ( ( ( 𝑃 ‘ 0 ) = 𝐴 ∧ ( 𝑃 ‘ 1 ) = 𝐵 ) ∧ ( ( 𝑃 ‘ 2 ) = 𝐶 ∧ ( 𝑃 ‘ 3 ) = 𝐷 ) ) → ( ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 2 ) ) ) ↔ ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 2 ) ) ) ) ) |
| 19 | 7 18 | syl | ⊢ ( 𝜑 → ( ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 2 ) ) ) ↔ ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 2 ) ) ) ) ) |
| 20 | 6 19 | mpbird | ⊢ ( 𝜑 → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 2 ) ) ) ) |
| 21 | 1 2 | 3wlkdlem2 | ⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = { 0 , 1 , 2 } |
| 22 | 21 | raleqi | ⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ↔ ∀ 𝑘 ∈ { 0 , 1 , 2 } { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 23 | c0ex | ⊢ 0 ∈ V | |
| 24 | 1ex | ⊢ 1 ∈ V | |
| 25 | 2ex | ⊢ 2 ∈ V | |
| 26 | fveq2 | ⊢ ( 𝑘 = 0 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 0 ) ) | |
| 27 | fv0p1e1 | ⊢ ( 𝑘 = 0 → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ 1 ) ) | |
| 28 | 26 27 | preq12d | ⊢ ( 𝑘 = 0 → { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } = { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ) |
| 29 | 2fveq3 | ⊢ ( 𝑘 = 0 → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ) | |
| 30 | 28 29 | sseq12d | ⊢ ( 𝑘 = 0 → ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ↔ { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ) ) |
| 31 | fveq2 | ⊢ ( 𝑘 = 1 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 1 ) ) | |
| 32 | oveq1 | ⊢ ( 𝑘 = 1 → ( 𝑘 + 1 ) = ( 1 + 1 ) ) | |
| 33 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 34 | 32 33 | eqtrdi | ⊢ ( 𝑘 = 1 → ( 𝑘 + 1 ) = 2 ) |
| 35 | 34 | fveq2d | ⊢ ( 𝑘 = 1 → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ 2 ) ) |
| 36 | 31 35 | preq12d | ⊢ ( 𝑘 = 1 → { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } = { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ) |
| 37 | 2fveq3 | ⊢ ( 𝑘 = 1 → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ) | |
| 38 | 36 37 | sseq12d | ⊢ ( 𝑘 = 1 → ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ↔ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ) ) |
| 39 | fveq2 | ⊢ ( 𝑘 = 2 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 2 ) ) | |
| 40 | oveq1 | ⊢ ( 𝑘 = 2 → ( 𝑘 + 1 ) = ( 2 + 1 ) ) | |
| 41 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
| 42 | 40 41 | eqtrdi | ⊢ ( 𝑘 = 2 → ( 𝑘 + 1 ) = 3 ) |
| 43 | 42 | fveq2d | ⊢ ( 𝑘 = 2 → ( 𝑃 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ 3 ) ) |
| 44 | 39 43 | preq12d | ⊢ ( 𝑘 = 2 → { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } = { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ) |
| 45 | 2fveq3 | ⊢ ( 𝑘 = 2 → ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 2 ) ) ) | |
| 46 | 44 45 | sseq12d | ⊢ ( 𝑘 = 2 → ( { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ↔ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 2 ) ) ) ) |
| 47 | 23 24 25 30 38 46 | raltp | ⊢ ( ∀ 𝑘 ∈ { 0 , 1 , 2 } { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ↔ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 2 ) ) ) ) |
| 48 | 22 47 | bitri | ⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ↔ ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ∧ { ( 𝑃 ‘ 1 ) , ( 𝑃 ‘ 2 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ∧ { ( 𝑃 ‘ 2 ) , ( 𝑃 ‘ 3 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 2 ) ) ) ) |
| 49 | 20 48 | sylibr | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |