This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 9 for 3wlkd . (Contributed by AV, 7-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3wlkd.p | ⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 | |
| 3wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 𝐾 𝐿 ”〉 | ||
| 3wlkd.s | ⊢ ( 𝜑 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ) | ||
| 3wlkd.n | ⊢ ( 𝜑 → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) | ||
| 3wlkd.e | ⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ 𝐿 ) ) ) | ||
| Assertion | 3wlkdlem9 | ⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3wlkd.p | ⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 𝐷 ”〉 | |
| 2 | 3wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 𝐾 𝐿 ”〉 | |
| 3 | 3wlkd.s | ⊢ ( 𝜑 → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) ) | |
| 4 | 3wlkd.n | ⊢ ( 𝜑 → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ ( 𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) ∧ 𝐶 ≠ 𝐷 ) ) | |
| 5 | 3wlkd.e | ⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ 𝐿 ) ) ) | |
| 6 | 1 2 3 4 5 | 3wlkdlem8 | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 0 ) = 𝐽 ∧ ( 𝐹 ‘ 1 ) = 𝐾 ∧ ( 𝐹 ‘ 2 ) = 𝐿 ) ) |
| 7 | fveq2 | ⊢ ( ( 𝐹 ‘ 0 ) = 𝐽 → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = ( 𝐼 ‘ 𝐽 ) ) | |
| 8 | 7 | sseq2d | ⊢ ( ( 𝐹 ‘ 0 ) = 𝐽 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ↔ { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ) ) |
| 9 | 8 | 3ad2ant1 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝐽 ∧ ( 𝐹 ‘ 1 ) = 𝐾 ∧ ( 𝐹 ‘ 2 ) = 𝐿 ) → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ↔ { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ) ) |
| 10 | fveq2 | ⊢ ( ( 𝐹 ‘ 1 ) = 𝐾 → ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = ( 𝐼 ‘ 𝐾 ) ) | |
| 11 | 10 | sseq2d | ⊢ ( ( 𝐹 ‘ 1 ) = 𝐾 → ( { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ↔ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) |
| 12 | 11 | 3ad2ant2 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝐽 ∧ ( 𝐹 ‘ 1 ) = 𝐾 ∧ ( 𝐹 ‘ 2 ) = 𝐿 ) → ( { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ↔ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) |
| 13 | fveq2 | ⊢ ( ( 𝐹 ‘ 2 ) = 𝐿 → ( 𝐼 ‘ ( 𝐹 ‘ 2 ) ) = ( 𝐼 ‘ 𝐿 ) ) | |
| 14 | 13 | sseq2d | ⊢ ( ( 𝐹 ‘ 2 ) = 𝐿 → ( { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 2 ) ) ↔ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ 𝐿 ) ) ) |
| 15 | 14 | 3ad2ant3 | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝐽 ∧ ( 𝐹 ‘ 1 ) = 𝐾 ∧ ( 𝐹 ‘ 2 ) = 𝐿 ) → ( { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 2 ) ) ↔ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ 𝐿 ) ) ) |
| 16 | 9 12 15 | 3anbi123d | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝐽 ∧ ( 𝐹 ‘ 1 ) = 𝐾 ∧ ( 𝐹 ‘ 2 ) = 𝐿 ) → ( ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 2 ) ) ) ↔ ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ 𝐿 ) ) ) ) |
| 17 | 6 16 | syl | ⊢ ( 𝜑 → ( ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 2 ) ) ) ↔ ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ 𝐿 ) ) ) ) |
| 18 | 5 17 | mpbird | ⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ∧ { 𝐶 , 𝐷 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 2 ) ) ) ) |