This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 9 for 2wlkd . (Contributed by AV, 14-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2wlkd.p | ⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 ”〉 | |
| 2wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 𝐾 ”〉 | ||
| 2wlkd.s | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) | ||
| 2wlkd.n | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) | ||
| 2wlkd.e | ⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) | ||
| Assertion | 2wlkdlem9 | ⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2wlkd.p | ⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 ”〉 | |
| 2 | 2wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 𝐾 ”〉 | |
| 3 | 2wlkd.s | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) | |
| 4 | 2wlkd.n | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) | |
| 5 | 2wlkd.e | ⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) | |
| 6 | 1 2 3 4 5 | 2wlkdlem8 | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 0 ) = 𝐽 ∧ ( 𝐹 ‘ 1 ) = 𝐾 ) ) |
| 7 | fveq2 | ⊢ ( ( 𝐹 ‘ 0 ) = 𝐽 → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = ( 𝐼 ‘ 𝐽 ) ) | |
| 8 | 7 | adantr | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝐽 ∧ ( 𝐹 ‘ 1 ) = 𝐾 ) → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = ( 𝐼 ‘ 𝐽 ) ) |
| 9 | 8 | sseq2d | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝐽 ∧ ( 𝐹 ‘ 1 ) = 𝐾 ) → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ↔ { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ) ) |
| 10 | fveq2 | ⊢ ( ( 𝐹 ‘ 1 ) = 𝐾 → ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = ( 𝐼 ‘ 𝐾 ) ) | |
| 11 | 10 | adantl | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝐽 ∧ ( 𝐹 ‘ 1 ) = 𝐾 ) → ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) = ( 𝐼 ‘ 𝐾 ) ) |
| 12 | 11 | sseq2d | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝐽 ∧ ( 𝐹 ‘ 1 ) = 𝐾 ) → ( { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ↔ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) |
| 13 | 9 12 | anbi12d | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝐽 ∧ ( 𝐹 ‘ 1 ) = 𝐾 ) → ( ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ) ↔ ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) ) |
| 14 | 6 13 | syl | ⊢ ( 𝜑 → ( ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ) ↔ ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) ) |
| 15 | 5 14 | mpbird | ⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 1 ) ) ) ) |