This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 9 for 2wlkd . (Contributed by AV, 14-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2wlkd.p | |- P = <" A B C "> |
|
| 2wlkd.f | |- F = <" J K "> |
||
| 2wlkd.s | |- ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) |
||
| 2wlkd.n | |- ( ph -> ( A =/= B /\ B =/= C ) ) |
||
| 2wlkd.e | |- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) ) |
||
| Assertion | 2wlkdlem9 | |- ( ph -> ( { A , B } C_ ( I ` ( F ` 0 ) ) /\ { B , C } C_ ( I ` ( F ` 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2wlkd.p | |- P = <" A B C "> |
|
| 2 | 2wlkd.f | |- F = <" J K "> |
|
| 3 | 2wlkd.s | |- ( ph -> ( A e. V /\ B e. V /\ C e. V ) ) |
|
| 4 | 2wlkd.n | |- ( ph -> ( A =/= B /\ B =/= C ) ) |
|
| 5 | 2wlkd.e | |- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) ) |
|
| 6 | 1 2 3 4 5 | 2wlkdlem8 | |- ( ph -> ( ( F ` 0 ) = J /\ ( F ` 1 ) = K ) ) |
| 7 | fveq2 | |- ( ( F ` 0 ) = J -> ( I ` ( F ` 0 ) ) = ( I ` J ) ) |
|
| 8 | 7 | adantr | |- ( ( ( F ` 0 ) = J /\ ( F ` 1 ) = K ) -> ( I ` ( F ` 0 ) ) = ( I ` J ) ) |
| 9 | 8 | sseq2d | |- ( ( ( F ` 0 ) = J /\ ( F ` 1 ) = K ) -> ( { A , B } C_ ( I ` ( F ` 0 ) ) <-> { A , B } C_ ( I ` J ) ) ) |
| 10 | fveq2 | |- ( ( F ` 1 ) = K -> ( I ` ( F ` 1 ) ) = ( I ` K ) ) |
|
| 11 | 10 | adantl | |- ( ( ( F ` 0 ) = J /\ ( F ` 1 ) = K ) -> ( I ` ( F ` 1 ) ) = ( I ` K ) ) |
| 12 | 11 | sseq2d | |- ( ( ( F ` 0 ) = J /\ ( F ` 1 ) = K ) -> ( { B , C } C_ ( I ` ( F ` 1 ) ) <-> { B , C } C_ ( I ` K ) ) ) |
| 13 | 9 12 | anbi12d | |- ( ( ( F ` 0 ) = J /\ ( F ` 1 ) = K ) -> ( ( { A , B } C_ ( I ` ( F ` 0 ) ) /\ { B , C } C_ ( I ` ( F ` 1 ) ) ) <-> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) ) ) |
| 14 | 6 13 | syl | |- ( ph -> ( ( { A , B } C_ ( I ` ( F ` 0 ) ) /\ { B , C } C_ ( I ` ( F ` 1 ) ) ) <-> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) ) ) |
| 15 | 5 14 | mpbird | |- ( ph -> ( { A , B } C_ ( I ` ( F ` 0 ) ) /\ { B , C } C_ ( I ` ( F ` 1 ) ) ) ) |