This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Construction of a walk from two given edges in a graph. (Contributed by Alexander van der Vekens, 5-Feb-2018) (Revised by AV, 23-Jan-2021) (Proof shortened by AV, 14-Feb-2021) (Revised by AV, 24-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2wlkd.p | ⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 ”〉 | |
| 2wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 𝐾 ”〉 | ||
| 2wlkd.s | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) | ||
| 2wlkd.n | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) | ||
| 2wlkd.e | ⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) | ||
| 2wlkd.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | ||
| 2wlkd.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | 2wlkd | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2wlkd.p | ⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 ”〉 | |
| 2 | 2wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 𝐾 ”〉 | |
| 3 | 2wlkd.s | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) | |
| 4 | 2wlkd.n | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) | |
| 5 | 2wlkd.e | ⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) | |
| 6 | 2wlkd.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 7 | 2wlkd.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 8 | s3cli | ⊢ 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ Word V | |
| 9 | 1 8 | eqeltri | ⊢ 𝑃 ∈ Word V |
| 10 | 9 | a1i | ⊢ ( 𝜑 → 𝑃 ∈ Word V ) |
| 11 | s2cli | ⊢ 〈“ 𝐽 𝐾 ”〉 ∈ Word V | |
| 12 | 2 11 | eqeltri | ⊢ 𝐹 ∈ Word V |
| 13 | 12 | a1i | ⊢ ( 𝜑 → 𝐹 ∈ Word V ) |
| 14 | 1 2 | 2wlkdlem1 | ⊢ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) |
| 15 | 14 | a1i | ⊢ ( 𝜑 → ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) |
| 16 | 1 2 3 4 5 | 2wlkdlem10 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 17 | 1 2 3 4 | 2wlkdlem5 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ≠ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
| 18 | 6 | 1vgrex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ V ) |
| 19 | 18 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 𝐺 ∈ V ) |
| 20 | 3 19 | syl | ⊢ ( 𝜑 → 𝐺 ∈ V ) |
| 21 | 1 2 3 | 2wlkdlem4 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ( 𝑃 ‘ 𝑘 ) ∈ 𝑉 ) |
| 22 | 10 13 15 16 17 20 6 7 21 | wlkd | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |