This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 8 for 2wlkd . (Contributed by AV, 14-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2wlkd.p | ⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 ”〉 | |
| 2wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 𝐾 ”〉 | ||
| 2wlkd.s | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) | ||
| 2wlkd.n | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) | ||
| 2wlkd.e | ⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) | ||
| Assertion | 2wlkdlem8 | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 0 ) = 𝐽 ∧ ( 𝐹 ‘ 1 ) = 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2wlkd.p | ⊢ 𝑃 = 〈“ 𝐴 𝐵 𝐶 ”〉 | |
| 2 | 2wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 𝐾 ”〉 | |
| 3 | 2wlkd.s | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) | |
| 4 | 2wlkd.n | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) ) | |
| 5 | 2wlkd.e | ⊢ ( 𝜑 → ( { 𝐴 , 𝐵 } ⊆ ( 𝐼 ‘ 𝐽 ) ∧ { 𝐵 , 𝐶 } ⊆ ( 𝐼 ‘ 𝐾 ) ) ) | |
| 6 | 1 2 3 4 5 | 2wlkdlem7 | ⊢ ( 𝜑 → ( 𝐽 ∈ V ∧ 𝐾 ∈ V ) ) |
| 7 | s2fv0 | ⊢ ( 𝐽 ∈ V → ( 〈“ 𝐽 𝐾 ”〉 ‘ 0 ) = 𝐽 ) | |
| 8 | s2fv1 | ⊢ ( 𝐾 ∈ V → ( 〈“ 𝐽 𝐾 ”〉 ‘ 1 ) = 𝐾 ) | |
| 9 | 7 8 | anim12i | ⊢ ( ( 𝐽 ∈ V ∧ 𝐾 ∈ V ) → ( ( 〈“ 𝐽 𝐾 ”〉 ‘ 0 ) = 𝐽 ∧ ( 〈“ 𝐽 𝐾 ”〉 ‘ 1 ) = 𝐾 ) ) |
| 10 | 6 9 | syl | ⊢ ( 𝜑 → ( ( 〈“ 𝐽 𝐾 ”〉 ‘ 0 ) = 𝐽 ∧ ( 〈“ 𝐽 𝐾 ”〉 ‘ 1 ) = 𝐾 ) ) |
| 11 | 2 | fveq1i | ⊢ ( 𝐹 ‘ 0 ) = ( 〈“ 𝐽 𝐾 ”〉 ‘ 0 ) |
| 12 | 11 | eqeq1i | ⊢ ( ( 𝐹 ‘ 0 ) = 𝐽 ↔ ( 〈“ 𝐽 𝐾 ”〉 ‘ 0 ) = 𝐽 ) |
| 13 | 2 | fveq1i | ⊢ ( 𝐹 ‘ 1 ) = ( 〈“ 𝐽 𝐾 ”〉 ‘ 1 ) |
| 14 | 13 | eqeq1i | ⊢ ( ( 𝐹 ‘ 1 ) = 𝐾 ↔ ( 〈“ 𝐽 𝐾 ”〉 ‘ 1 ) = 𝐾 ) |
| 15 | 12 14 | anbi12i | ⊢ ( ( ( 𝐹 ‘ 0 ) = 𝐽 ∧ ( 𝐹 ‘ 1 ) = 𝐾 ) ↔ ( ( 〈“ 𝐽 𝐾 ”〉 ‘ 0 ) = 𝐽 ∧ ( 〈“ 𝐽 𝐾 ”〉 ‘ 1 ) = 𝐾 ) ) |
| 16 | 10 15 | sylibr | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 0 ) = 𝐽 ∧ ( 𝐹 ‘ 1 ) = 𝐾 ) ) |