This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute the unabbreviated form of proper substitution in and out of a conjunction. 2uasbanh is derived from 2uasbanhVD . (Contributed by Alan Sare, 31-May-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 2uasbanh.1 | ⊢ ( 𝜒 ↔ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ∧ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) ) ) | |
| Assertion | 2uasbanh | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ↔ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ∧ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2uasbanh.1 | ⊢ ( 𝜒 ↔ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ∧ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) ) ) | |
| 2 | simpl | ⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) → ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) | |
| 3 | simprl | ⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) → 𝜑 ) | |
| 4 | 2 3 | jca | ⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) → ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) |
| 5 | 4 | 2eximi | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) → ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) |
| 6 | simprr | ⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) → 𝜓 ) | |
| 7 | 2 6 | jca | ⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) → ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) ) |
| 8 | 7 | 2eximi | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) → ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) ) |
| 9 | 5 8 | jca | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) → ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ∧ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) ) ) |
| 10 | 1 | simplbi | ⊢ ( 𝜒 → ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) |
| 11 | simpl | ⊢ ( ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) → ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) | |
| 12 | 11 | 2eximi | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
| 13 | 10 12 | syl | ⊢ ( 𝜒 → ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) |
| 14 | ax6e2ndeq | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ) | |
| 15 | 13 14 | sylibr | ⊢ ( 𝜒 → ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) ) |
| 16 | 2sb5nd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) ) | |
| 17 | 15 16 | syl | ⊢ ( 𝜒 → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ) ) |
| 18 | 10 17 | mpbird | ⊢ ( 𝜒 → [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ) |
| 19 | 1 | simprbi | ⊢ ( 𝜒 → ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) ) |
| 20 | 2sb5nd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) ) ) | |
| 21 | 15 20 | syl | ⊢ ( 𝜒 → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) ) ) |
| 22 | 19 21 | mpbird | ⊢ ( 𝜒 → [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ) |
| 23 | sban | ⊢ ( [ 𝑣 / 𝑦 ] ( 𝜑 ∧ 𝜓 ) ↔ ( [ 𝑣 / 𝑦 ] 𝜑 ∧ [ 𝑣 / 𝑦 ] 𝜓 ) ) | |
| 24 | 23 | sbbii | ⊢ ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] ( 𝜑 ∧ 𝜓 ) ↔ [ 𝑢 / 𝑥 ] ( [ 𝑣 / 𝑦 ] 𝜑 ∧ [ 𝑣 / 𝑦 ] 𝜓 ) ) |
| 25 | sban | ⊢ ( [ 𝑢 / 𝑥 ] ( [ 𝑣 / 𝑦 ] 𝜑 ∧ [ 𝑣 / 𝑦 ] 𝜓 ) ↔ ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ) ) | |
| 26 | 24 25 | bitri | ⊢ ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] ( 𝜑 ∧ 𝜓 ) ↔ ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜑 ∧ [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] 𝜓 ) ) |
| 27 | 18 22 26 | sylanbrc | ⊢ ( 𝜒 → [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] ( 𝜑 ∧ 𝜓 ) ) |
| 28 | 2sb5nd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∨ 𝑢 = 𝑣 ) → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ) ) | |
| 29 | 15 28 | syl | ⊢ ( 𝜒 → ( [ 𝑢 / 𝑥 ] [ 𝑣 / 𝑦 ] ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ) ) |
| 30 | 27 29 | mpbid | ⊢ ( 𝜒 → ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ) |
| 31 | 1 30 | sylbir | ⊢ ( ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ∧ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) ) → ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ) |
| 32 | 9 31 | impbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ ( 𝜑 ∧ 𝜓 ) ) ↔ ( ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜑 ) ∧ ∃ 𝑥 ∃ 𝑦 ( ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣 ) ∧ 𝜓 ) ) ) |