This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition allowing to swap restricted "at most one" and restricted existential quantifiers, analogous to 2moswap . (Contributed by Alexander van der Vekens, 25-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2rmoswap | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ∈ 𝐵 𝜑 → ( ∃* 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃* 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rmo | ⊢ ( ∃* 𝑦 ∈ 𝐵 𝜑 ↔ ∃* 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) | |
| 2 | 1 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |
| 3 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∃* 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) | |
| 4 | moanimv | ⊢ ( ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐴 → ∃* 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) | |
| 5 | 4 | albii | ⊢ ( ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∃* 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 6 | 3 5 | bitr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 7 | 2moswapv | ⊢ ( ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) → ( ∃* 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) → ∃* 𝑦 ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) ) | |
| 8 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 𝜑 ) ) | |
| 9 | r19.42v | ⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 𝜑 ) ) | |
| 10 | df-rex | ⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) | |
| 11 | an12 | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) | |
| 12 | 11 | exbii | ⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 13 | 10 12 | bitri | ⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 14 | 9 13 | bitr3i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 𝜑 ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 15 | 14 | mobii | ⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 𝜑 ) ↔ ∃* 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 16 | 8 15 | bitri | ⊢ ( ∃* 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃* 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 17 | df-rmo | ⊢ ( ∃* 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑦 ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝜑 ) ) | |
| 18 | r19.42v | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝜑 ) ) | |
| 19 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) | |
| 20 | 18 19 | bitr3i | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 21 | 20 | mobii | ⊢ ( ∃* 𝑦 ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝜑 ) ↔ ∃* 𝑦 ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 22 | 17 21 | bitri | ⊢ ( ∃* 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑦 ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 23 | 7 16 22 | 3imtr4g | ⊢ ( ∀ 𝑥 ∃* 𝑦 ( 𝑥 ∈ 𝐴 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) → ( ∃* 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃* 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
| 24 | 6 23 | sylbi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ( ∃* 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃* 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
| 25 | 2 24 | sylbi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃* 𝑦 ∈ 𝐵 𝜑 → ( ∃* 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃* 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |