This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double restricted existential uniqueness implies double restricted unique existential quantification, analogous to 2exeu . (Contributed by Alexander van der Vekens, 25-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2rexreu | ⊢ ( ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) → ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reurmo | ⊢ ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃* 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) | |
| 2 | reurex | ⊢ ( ∃! 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑦 ∈ 𝐵 𝜑 ) | |
| 3 | 2 | rmoimi | ⊢ ( ∃* 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃* 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ) |
| 4 | 1 3 | syl | ⊢ ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃* 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ) |
| 5 | 2reurex | ⊢ ( ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ) | |
| 6 | 4 5 | anim12ci | ⊢ ( ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) → ( ∃ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ∧ ∃* 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ) ) |
| 7 | reu5 | ⊢ ( ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ↔ ( ∃ 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ∧ ∃* 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ) ) | |
| 8 | 6 7 | sylibr | ⊢ ( ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃! 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) → ∃! 𝑥 ∈ 𝐴 ∃! 𝑦 ∈ 𝐵 𝜑 ) |