This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition allowing to swap an existential quantifier and at at-most-one quantifier. Version of 2moswap with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 10-Apr-2004) (Revised by GG, 22-Aug-2023) Factor out common proof lines with moexexvw . (Revised by Wolf Lammen, 2-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2moswapv | ⊢ ( ∀ 𝑥 ∃* 𝑦 𝜑 → ( ∃* 𝑥 ∃ 𝑦 𝜑 → ∃* 𝑦 ∃ 𝑥 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfe1 | ⊢ Ⅎ 𝑦 ∃ 𝑦 𝜑 | |
| 2 | 1 | nfmov | ⊢ Ⅎ 𝑦 ∃* 𝑥 ∃ 𝑦 𝜑 |
| 3 | nfe1 | ⊢ Ⅎ 𝑥 ∃ 𝑥 ( ∃ 𝑦 𝜑 ∧ 𝜑 ) | |
| 4 | 3 | nfmov | ⊢ Ⅎ 𝑥 ∃* 𝑦 ∃ 𝑥 ( ∃ 𝑦 𝜑 ∧ 𝜑 ) |
| 5 | 1 2 4 | moexexlem | ⊢ ( ( ∃* 𝑥 ∃ 𝑦 𝜑 ∧ ∀ 𝑥 ∃* 𝑦 𝜑 ) → ∃* 𝑦 ∃ 𝑥 ( ∃ 𝑦 𝜑 ∧ 𝜑 ) ) |
| 6 | 5 | expcom | ⊢ ( ∀ 𝑥 ∃* 𝑦 𝜑 → ( ∃* 𝑥 ∃ 𝑦 𝜑 → ∃* 𝑦 ∃ 𝑥 ( ∃ 𝑦 𝜑 ∧ 𝜑 ) ) ) |
| 7 | 19.8a | ⊢ ( 𝜑 → ∃ 𝑦 𝜑 ) | |
| 8 | 7 | pm4.71ri | ⊢ ( 𝜑 ↔ ( ∃ 𝑦 𝜑 ∧ 𝜑 ) ) |
| 9 | 8 | exbii | ⊢ ( ∃ 𝑥 𝜑 ↔ ∃ 𝑥 ( ∃ 𝑦 𝜑 ∧ 𝜑 ) ) |
| 10 | 9 | mobii | ⊢ ( ∃* 𝑦 ∃ 𝑥 𝜑 ↔ ∃* 𝑦 ∃ 𝑥 ( ∃ 𝑦 𝜑 ∧ 𝜑 ) ) |
| 11 | 6 10 | imbitrrdi | ⊢ ( ∀ 𝑥 ∃* 𝑦 𝜑 → ( ∃* 𝑥 ∃ 𝑦 𝜑 → ∃* 𝑦 ∃ 𝑥 𝜑 ) ) |