This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double restricted quantification with existential uniqueness, analogous to 2euex . (Contributed by Alexander van der Vekens, 24-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2reurex | ⊢ ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑦 ∈ 𝐵 ∃! 𝑥 ∈ 𝐴 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reu5 | ⊢ ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃* 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ) | |
| 2 | rexcom | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) | |
| 3 | nfcv | ⊢ Ⅎ 𝑦 𝐴 | |
| 4 | nfre1 | ⊢ Ⅎ 𝑦 ∃ 𝑦 ∈ 𝐵 𝜑 | |
| 5 | 3 4 | nfrmow | ⊢ Ⅎ 𝑦 ∃* 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 |
| 6 | rspe | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) → ∃ 𝑦 ∈ 𝐵 𝜑 ) | |
| 7 | 6 | ex | ⊢ ( 𝑦 ∈ 𝐵 → ( 𝜑 → ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
| 8 | 7 | ralrimivw | ⊢ ( 𝑦 ∈ 𝐵 → ∀ 𝑥 ∈ 𝐴 ( 𝜑 → ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
| 9 | rmoim | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → ∃ 𝑦 ∈ 𝐵 𝜑 ) → ( ∃* 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃* 𝑥 ∈ 𝐴 𝜑 ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝑦 ∈ 𝐵 → ( ∃* 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃* 𝑥 ∈ 𝐴 𝜑 ) ) |
| 11 | 10 | impcom | ⊢ ( ( ∃* 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ∃* 𝑥 ∈ 𝐴 𝜑 ) |
| 12 | rmo5 | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 → ∃! 𝑥 ∈ 𝐴 𝜑 ) ) | |
| 13 | 11 12 | sylib | ⊢ ( ( ∃* 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( ∃ 𝑥 ∈ 𝐴 𝜑 → ∃! 𝑥 ∈ 𝐴 𝜑 ) ) |
| 14 | 13 | ex | ⊢ ( ∃* 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ( 𝑦 ∈ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝜑 → ∃! 𝑥 ∈ 𝐴 𝜑 ) ) ) |
| 15 | 5 14 | reximdai | ⊢ ( ∃* 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑦 ∈ 𝐵 ∃! 𝑥 ∈ 𝐴 𝜑 ) ) |
| 16 | 2 15 | biimtrid | ⊢ ( ∃* 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑦 ∈ 𝐵 ∃! 𝑥 ∈ 𝐴 𝜑 ) ) |
| 17 | 16 | impcom | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ∧ ∃* 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) → ∃ 𝑦 ∈ 𝐵 ∃! 𝑥 ∈ 𝐴 𝜑 ) |
| 18 | 1 17 | sylbi | ⊢ ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑦 ∈ 𝐵 ∃! 𝑥 ∈ 𝐴 𝜑 ) |