This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double quantification with existential uniqueness. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker 2euexv when possible. (Contributed by NM, 3-Dec-2001) (Proof shortened by Andrew Salmon, 9-Jul-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2euex | ⊢ ( ∃! 𝑥 ∃ 𝑦 𝜑 → ∃ 𝑦 ∃! 𝑥 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu | ⊢ ( ∃! 𝑥 ∃ 𝑦 𝜑 ↔ ( ∃ 𝑥 ∃ 𝑦 𝜑 ∧ ∃* 𝑥 ∃ 𝑦 𝜑 ) ) | |
| 2 | excom | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑦 ∃ 𝑥 𝜑 ) | |
| 3 | nfe1 | ⊢ Ⅎ 𝑦 ∃ 𝑦 𝜑 | |
| 4 | 3 | nfmo | ⊢ Ⅎ 𝑦 ∃* 𝑥 ∃ 𝑦 𝜑 |
| 5 | 19.8a | ⊢ ( 𝜑 → ∃ 𝑦 𝜑 ) | |
| 6 | 5 | moimi | ⊢ ( ∃* 𝑥 ∃ 𝑦 𝜑 → ∃* 𝑥 𝜑 ) |
| 7 | moeu | ⊢ ( ∃* 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∃! 𝑥 𝜑 ) ) | |
| 8 | 6 7 | sylib | ⊢ ( ∃* 𝑥 ∃ 𝑦 𝜑 → ( ∃ 𝑥 𝜑 → ∃! 𝑥 𝜑 ) ) |
| 9 | 4 8 | eximd | ⊢ ( ∃* 𝑥 ∃ 𝑦 𝜑 → ( ∃ 𝑦 ∃ 𝑥 𝜑 → ∃ 𝑦 ∃! 𝑥 𝜑 ) ) |
| 10 | 2 9 | biimtrid | ⊢ ( ∃* 𝑥 ∃ 𝑦 𝜑 → ( ∃ 𝑥 ∃ 𝑦 𝜑 → ∃ 𝑦 ∃! 𝑥 𝜑 ) ) |
| 11 | 10 | impcom | ⊢ ( ( ∃ 𝑥 ∃ 𝑦 𝜑 ∧ ∃* 𝑥 ∃ 𝑦 𝜑 ) → ∃ 𝑦 ∃! 𝑥 𝜑 ) |
| 12 | 1 11 | sylbi | ⊢ ( ∃! 𝑥 ∃ 𝑦 𝜑 → ∃ 𝑦 ∃! 𝑥 𝜑 ) |