This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by NM, 27-Jun-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2pwuninel | ⊢ ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomirr | ⊢ ¬ 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 | |
| 2 | elssuni | ⊢ ( 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ⊆ ∪ 𝐴 ) | |
| 3 | ssdomg | ⊢ ( ∪ 𝐴 ∈ V → ( 𝒫 𝒫 ∪ 𝐴 ⊆ ∪ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ≼ ∪ 𝐴 ) ) | |
| 4 | canth2g | ⊢ ( ∪ 𝐴 ∈ V → ∪ 𝐴 ≺ 𝒫 ∪ 𝐴 ) | |
| 5 | pwexb | ⊢ ( ∪ 𝐴 ∈ V ↔ 𝒫 ∪ 𝐴 ∈ V ) | |
| 6 | canth2g | ⊢ ( 𝒫 ∪ 𝐴 ∈ V → 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 ) | |
| 7 | 5 6 | sylbi | ⊢ ( ∪ 𝐴 ∈ V → 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 ) |
| 8 | sdomtr | ⊢ ( ( ∪ 𝐴 ≺ 𝒫 ∪ 𝐴 ∧ 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 ) → ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 ) | |
| 9 | 4 7 8 | syl2anc | ⊢ ( ∪ 𝐴 ∈ V → ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 ) |
| 10 | domsdomtr | ⊢ ( ( 𝒫 𝒫 ∪ 𝐴 ≼ ∪ 𝐴 ∧ ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 ) → 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 ) | |
| 11 | 10 | ex | ⊢ ( 𝒫 𝒫 ∪ 𝐴 ≼ ∪ 𝐴 → ( ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 ) ) |
| 12 | 3 9 11 | syl6ci | ⊢ ( ∪ 𝐴 ∈ V → ( 𝒫 𝒫 ∪ 𝐴 ⊆ ∪ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 ) ) |
| 13 | 2 12 | syl5 | ⊢ ( ∪ 𝐴 ∈ V → ( 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 ) ) |
| 14 | 1 13 | mtoi | ⊢ ( ∪ 𝐴 ∈ V → ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 ) |
| 15 | elex | ⊢ ( 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ∈ V ) | |
| 16 | pwexb | ⊢ ( 𝒫 ∪ 𝐴 ∈ V ↔ 𝒫 𝒫 ∪ 𝐴 ∈ V ) | |
| 17 | 5 16 | bitri | ⊢ ( ∪ 𝐴 ∈ V ↔ 𝒫 𝒫 ∪ 𝐴 ∈ V ) |
| 18 | 15 17 | sylibr | ⊢ ( 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → ∪ 𝐴 ∈ V ) |
| 19 | 18 | con3i | ⊢ ( ¬ ∪ 𝐴 ∈ V → ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 ) |
| 20 | 14 19 | pm2.61i | ⊢ ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 |