This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two equivalent expressions for double existential uniqueness. (Contributed by NM, 2-Feb-2005) (Revised by Mario Carneiro, 17-Oct-2016) (Proof shortened by Wolf Lammen, 2-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2eu6 | ⊢ ( ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃ 𝑥 𝜑 ) ↔ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2eu4 | ⊢ ( ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃ 𝑥 𝜑 ) ↔ ( ∃ 𝑥 ∃ 𝑦 𝜑 ∧ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) | |
| 2 | nfia1 | ⊢ Ⅎ 𝑥 ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) | |
| 3 | nfa1 | ⊢ Ⅎ 𝑦 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) | |
| 4 | nfv | ⊢ Ⅎ 𝑦 𝑥 = 𝑧 | |
| 5 | simpl | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝑥 = 𝑧 ) | |
| 6 | 5 | imim2i | ⊢ ( ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( 𝜑 → 𝑥 = 𝑧 ) ) |
| 7 | 6 | sps | ⊢ ( ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( 𝜑 → 𝑥 = 𝑧 ) ) |
| 8 | 3 4 7 | exlimd | ⊢ ( ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( ∃ 𝑦 𝜑 → 𝑥 = 𝑧 ) ) |
| 9 | ax12v | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑧 → ∃ 𝑦 𝜑 ) ) ) | |
| 10 | 8 9 | syli | ⊢ ( ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( ∃ 𝑦 𝜑 → ∀ 𝑥 ( 𝑥 = 𝑧 → ∃ 𝑦 𝜑 ) ) ) |
| 11 | 10 | com12 | ⊢ ( ∃ 𝑦 𝜑 → ( ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∀ 𝑥 ( 𝑥 = 𝑧 → ∃ 𝑦 𝜑 ) ) ) |
| 12 | 11 | spsd | ⊢ ( ∃ 𝑦 𝜑 → ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∀ 𝑥 ( 𝑥 = 𝑧 → ∃ 𝑦 𝜑 ) ) ) |
| 13 | nfs1v | ⊢ Ⅎ 𝑦 [ 𝑤 / 𝑦 ] 𝜑 | |
| 14 | simpr | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝑦 = 𝑤 ) | |
| 15 | 14 | imim2i | ⊢ ( ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( 𝜑 → 𝑦 = 𝑤 ) ) |
| 16 | sbequ1 | ⊢ ( 𝑦 = 𝑤 → ( 𝜑 → [ 𝑤 / 𝑦 ] 𝜑 ) ) | |
| 17 | 15 16 | syli | ⊢ ( ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( 𝜑 → [ 𝑤 / 𝑦 ] 𝜑 ) ) |
| 18 | 17 | sps | ⊢ ( ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( 𝜑 → [ 𝑤 / 𝑦 ] 𝜑 ) ) |
| 19 | 3 13 18 | exlimd | ⊢ ( ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( ∃ 𝑦 𝜑 → [ 𝑤 / 𝑦 ] 𝜑 ) ) |
| 20 | 19 | imim2d | ⊢ ( ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( ( 𝑥 = 𝑧 → ∃ 𝑦 𝜑 ) → ( 𝑥 = 𝑧 → [ 𝑤 / 𝑦 ] 𝜑 ) ) ) |
| 21 | 20 | al2imi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( ∀ 𝑥 ( 𝑥 = 𝑧 → ∃ 𝑦 𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝑧 → [ 𝑤 / 𝑦 ] 𝜑 ) ) ) |
| 22 | sb6 | ⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑧 → [ 𝑤 / 𝑦 ] 𝜑 ) ) | |
| 23 | 2sb6 | ⊢ ( [ 𝑧 / 𝑥 ] [ 𝑤 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) | |
| 24 | 22 23 | bitr3i | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝑧 → [ 𝑤 / 𝑦 ] 𝜑 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) |
| 25 | 21 24 | imbitrdi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( ∀ 𝑥 ( 𝑥 = 𝑧 → ∃ 𝑦 𝜑 ) → ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) ) |
| 26 | 12 25 | sylcom | ⊢ ( ∃ 𝑦 𝜑 → ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) ) |
| 27 | 26 | ancld | ⊢ ( ∃ 𝑦 𝜑 → ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) ) ) |
| 28 | 2albiim | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ∧ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) ) | |
| 29 | 27 28 | imbitrrdi | ⊢ ( ∃ 𝑦 𝜑 → ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 30 | 2 29 | exlimi | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 → ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 31 | 30 | 2eximdv | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 → ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 32 | 31 | imp | ⊢ ( ( ∃ 𝑥 ∃ 𝑦 𝜑 ∧ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) → ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 33 | biimpr | ⊢ ( ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) | |
| 34 | 33 | 2alimi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) |
| 35 | 34 | 2eximi | ⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) |
| 36 | 2exsb | ⊢ ( ∃ 𝑥 ∃ 𝑦 𝜑 ↔ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝜑 ) ) | |
| 37 | 35 36 | sylibr | ⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∃ 𝑥 ∃ 𝑦 𝜑 ) |
| 38 | biimp | ⊢ ( ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) | |
| 39 | 38 | 2alimi | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 40 | 39 | 2eximi | ⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 41 | 37 40 | jca | ⊢ ( ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) → ( ∃ 𝑥 ∃ 𝑦 𝜑 ∧ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ) |
| 42 | 32 41 | impbii | ⊢ ( ( ∃ 𝑥 ∃ 𝑦 𝜑 ∧ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) ↔ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |
| 43 | 1 42 | bitri | ⊢ ( ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃ 𝑥 𝜑 ) ↔ ∃ 𝑧 ∃ 𝑤 ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) ) ) |