This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cyclically shifting a word two times is commutative. (Contributed by AV, 21-Apr-2018) (Revised by AV, 5-Jun-2018) (Revised by Mario Carneiro/AV, 1-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2cshwcom | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑁 ) cyclShift 𝑀 ) = ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 2 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 3 | addcom | ⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 𝑀 + 𝑁 ) = ( 𝑁 + 𝑀 ) ) | |
| 4 | 1 2 3 | syl2anr | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 + 𝑁 ) = ( 𝑁 + 𝑀 ) ) |
| 5 | 4 | 3adant1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 + 𝑁 ) = ( 𝑁 + 𝑀 ) ) |
| 6 | 5 | oveq2d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) = ( 𝑊 cyclShift ( 𝑁 + 𝑀 ) ) ) |
| 7 | 2cshw | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ) | |
| 8 | 7 | 3com23 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ) |
| 9 | 2cshw | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑁 ) cyclShift 𝑀 ) = ( 𝑊 cyclShift ( 𝑁 + 𝑀 ) ) ) | |
| 10 | 6 8 9 | 3eqtr4rd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑁 ) cyclShift 𝑀 ) = ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) |