This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cyclically shifting a word two times is commutative. (Contributed by AV, 21-Apr-2018) (Revised by AV, 5-Jun-2018) (Revised by Mario Carneiro/AV, 1-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2cshwcom | |- ( ( W e. Word V /\ N e. ZZ /\ M e. ZZ ) -> ( ( W cyclShift N ) cyclShift M ) = ( ( W cyclShift M ) cyclShift N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 2 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 3 | addcom | |- ( ( M e. CC /\ N e. CC ) -> ( M + N ) = ( N + M ) ) |
|
| 4 | 1 2 3 | syl2anr | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( M + N ) = ( N + M ) ) |
| 5 | 4 | 3adant1 | |- ( ( W e. Word V /\ N e. ZZ /\ M e. ZZ ) -> ( M + N ) = ( N + M ) ) |
| 6 | 5 | oveq2d | |- ( ( W e. Word V /\ N e. ZZ /\ M e. ZZ ) -> ( W cyclShift ( M + N ) ) = ( W cyclShift ( N + M ) ) ) |
| 7 | 2cshw | |- ( ( W e. Word V /\ M e. ZZ /\ N e. ZZ ) -> ( ( W cyclShift M ) cyclShift N ) = ( W cyclShift ( M + N ) ) ) |
|
| 8 | 7 | 3com23 | |- ( ( W e. Word V /\ N e. ZZ /\ M e. ZZ ) -> ( ( W cyclShift M ) cyclShift N ) = ( W cyclShift ( M + N ) ) ) |
| 9 | 2cshw | |- ( ( W e. Word V /\ N e. ZZ /\ M e. ZZ ) -> ( ( W cyclShift N ) cyclShift M ) = ( W cyclShift ( N + M ) ) ) |
|
| 10 | 6 8 9 | 3eqtr4rd | |- ( ( W e. Word V /\ N e. ZZ /\ M e. ZZ ) -> ( ( W cyclShift N ) cyclShift M ) = ( ( W cyclShift M ) cyclShift N ) ) |