This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 4 for 1wlkd . (Contributed by AV, 22-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1wlkd.p | ⊢ 𝑃 = 〈“ 𝑋 𝑌 ”〉 | |
| 1wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 ”〉 | ||
| 1wlkd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| 1wlkd.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| 1wlkd.l | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → ( 𝐼 ‘ 𝐽 ) = { 𝑋 } ) | ||
| 1wlkd.j | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → { 𝑋 , 𝑌 } ⊆ ( 𝐼 ‘ 𝐽 ) ) | ||
| Assertion | 1wlkdlem4 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1wlkd.p | ⊢ 𝑃 = 〈“ 𝑋 𝑌 ”〉 | |
| 2 | 1wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 ”〉 | |
| 3 | 1wlkd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 4 | 1wlkd.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 5 | 1wlkd.l | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → ( 𝐼 ‘ 𝐽 ) = { 𝑋 } ) | |
| 6 | 1wlkd.j | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → { 𝑋 , 𝑌 } ⊆ ( 𝐼 ‘ 𝐽 ) ) | |
| 7 | 2 | fveq1i | ⊢ ( 𝐹 ‘ 0 ) = ( 〈“ 𝐽 ”〉 ‘ 0 ) |
| 8 | 1 2 3 4 5 6 | 1wlkdlem2 | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐼 ‘ 𝐽 ) ) |
| 9 | 8 | elfvexd | ⊢ ( 𝜑 → 𝐽 ∈ V ) |
| 10 | s1fv | ⊢ ( 𝐽 ∈ V → ( 〈“ 𝐽 ”〉 ‘ 0 ) = 𝐽 ) | |
| 11 | 9 10 | syl | ⊢ ( 𝜑 → ( 〈“ 𝐽 ”〉 ‘ 0 ) = 𝐽 ) |
| 12 | 7 11 | eqtrid | ⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = 𝐽 ) |
| 13 | 12 | fveq2d | ⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = ( 𝐼 ‘ 𝐽 ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = ( 𝐼 ‘ 𝐽 ) ) |
| 15 | 14 5 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑋 } ) |
| 16 | df-ne | ⊢ ( 𝑋 ≠ 𝑌 ↔ ¬ 𝑋 = 𝑌 ) | |
| 17 | 16 6 | sylan2br | ⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑌 ) → { 𝑋 , 𝑌 } ⊆ ( 𝐼 ‘ 𝐽 ) ) |
| 18 | 13 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑌 ) → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = ( 𝐼 ‘ 𝐽 ) ) |
| 19 | 17 18 | sseqtrrd | ⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑌 ) → { 𝑋 , 𝑌 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ) |
| 20 | 15 19 | ifpimpda | ⊢ ( 𝜑 → if- ( 𝑋 = 𝑌 , ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑋 } , { 𝑋 , 𝑌 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ) ) |
| 21 | 1 | fveq1i | ⊢ ( 𝑃 ‘ 0 ) = ( 〈“ 𝑋 𝑌 ”〉 ‘ 0 ) |
| 22 | s2fv0 | ⊢ ( 𝑋 ∈ 𝑉 → ( 〈“ 𝑋 𝑌 ”〉 ‘ 0 ) = 𝑋 ) | |
| 23 | 3 22 | syl | ⊢ ( 𝜑 → ( 〈“ 𝑋 𝑌 ”〉 ‘ 0 ) = 𝑋 ) |
| 24 | 21 23 | eqtrid | ⊢ ( 𝜑 → ( 𝑃 ‘ 0 ) = 𝑋 ) |
| 25 | 1 | fveq1i | ⊢ ( 𝑃 ‘ 1 ) = ( 〈“ 𝑋 𝑌 ”〉 ‘ 1 ) |
| 26 | s2fv1 | ⊢ ( 𝑌 ∈ 𝑉 → ( 〈“ 𝑋 𝑌 ”〉 ‘ 1 ) = 𝑌 ) | |
| 27 | 4 26 | syl | ⊢ ( 𝜑 → ( 〈“ 𝑋 𝑌 ”〉 ‘ 1 ) = 𝑌 ) |
| 28 | 25 27 | eqtrid | ⊢ ( 𝜑 → ( 𝑃 ‘ 1 ) = 𝑌 ) |
| 29 | eqeq12 | ⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑋 ∧ ( 𝑃 ‘ 1 ) = 𝑌 ) → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) ↔ 𝑋 = 𝑌 ) ) | |
| 30 | sneq | ⊢ ( ( 𝑃 ‘ 0 ) = 𝑋 → { ( 𝑃 ‘ 0 ) } = { 𝑋 } ) | |
| 31 | 30 | adantr | ⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑋 ∧ ( 𝑃 ‘ 1 ) = 𝑌 ) → { ( 𝑃 ‘ 0 ) } = { 𝑋 } ) |
| 32 | 31 | eqeq2d | ⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑋 ∧ ( 𝑃 ‘ 1 ) = 𝑌 ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑋 } ) ) |
| 33 | preq12 | ⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑋 ∧ ( 𝑃 ‘ 1 ) = 𝑌 ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } = { 𝑋 , 𝑌 } ) | |
| 34 | 33 | sseq1d | ⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑋 ∧ ( 𝑃 ‘ 1 ) = 𝑌 ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ↔ { 𝑋 , 𝑌 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ) ) |
| 35 | 29 32 34 | ifpbi123d | ⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑋 ∧ ( 𝑃 ‘ 1 ) = 𝑌 ) → ( if- ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) , ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) } , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ) ↔ if- ( 𝑋 = 𝑌 , ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑋 } , { 𝑋 , 𝑌 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ) ) ) |
| 36 | 24 28 35 | syl2anc | ⊢ ( 𝜑 → ( if- ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) , ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) } , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ) ↔ if- ( 𝑋 = 𝑌 , ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑋 } , { 𝑋 , 𝑌 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ) ) ) |
| 37 | 20 36 | mpbird | ⊢ ( 𝜑 → if- ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) , ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) } , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ) ) |
| 38 | c0ex | ⊢ 0 ∈ V | |
| 39 | oveq1 | ⊢ ( 𝑘 = 0 → ( 𝑘 + 1 ) = ( 0 + 1 ) ) | |
| 40 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 41 | 39 40 | eqtrdi | ⊢ ( 𝑘 = 0 → ( 𝑘 + 1 ) = 1 ) |
| 42 | wkslem2 | ⊢ ( ( 𝑘 = 0 ∧ ( 𝑘 + 1 ) = 1 ) → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ if- ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) , ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) } , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ) ) ) | |
| 43 | 41 42 | mpdan | ⊢ ( 𝑘 = 0 → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ if- ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) , ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) } , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ) ) ) |
| 44 | 38 43 | ralsn | ⊢ ( ∀ 𝑘 ∈ { 0 } if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ if- ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) , ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) } , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ) ) |
| 45 | 37 44 | sylibr | ⊢ ( 𝜑 → ∀ 𝑘 ∈ { 0 } if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 46 | 2 | fveq2i | ⊢ ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 〈“ 𝐽 ”〉 ) |
| 47 | s1len | ⊢ ( ♯ ‘ 〈“ 𝐽 ”〉 ) = 1 | |
| 48 | 46 47 | eqtri | ⊢ ( ♯ ‘ 𝐹 ) = 1 |
| 49 | 48 | oveq2i | ⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 1 ) |
| 50 | fzo01 | ⊢ ( 0 ..^ 1 ) = { 0 } | |
| 51 | 49 50 | eqtri | ⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = { 0 } |
| 52 | 51 | a1i | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = { 0 } ) |
| 53 | 45 52 | raleqtrrdv | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |