This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 4 for 1wlkd . (Contributed by AV, 22-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1wlkd.p | |- P = <" X Y "> |
|
| 1wlkd.f | |- F = <" J "> |
||
| 1wlkd.x | |- ( ph -> X e. V ) |
||
| 1wlkd.y | |- ( ph -> Y e. V ) |
||
| 1wlkd.l | |- ( ( ph /\ X = Y ) -> ( I ` J ) = { X } ) |
||
| 1wlkd.j | |- ( ( ph /\ X =/= Y ) -> { X , Y } C_ ( I ` J ) ) |
||
| Assertion | 1wlkdlem4 | |- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1wlkd.p | |- P = <" X Y "> |
|
| 2 | 1wlkd.f | |- F = <" J "> |
|
| 3 | 1wlkd.x | |- ( ph -> X e. V ) |
|
| 4 | 1wlkd.y | |- ( ph -> Y e. V ) |
|
| 5 | 1wlkd.l | |- ( ( ph /\ X = Y ) -> ( I ` J ) = { X } ) |
|
| 6 | 1wlkd.j | |- ( ( ph /\ X =/= Y ) -> { X , Y } C_ ( I ` J ) ) |
|
| 7 | 2 | fveq1i | |- ( F ` 0 ) = ( <" J "> ` 0 ) |
| 8 | 1 2 3 4 5 6 | 1wlkdlem2 | |- ( ph -> X e. ( I ` J ) ) |
| 9 | 8 | elfvexd | |- ( ph -> J e. _V ) |
| 10 | s1fv | |- ( J e. _V -> ( <" J "> ` 0 ) = J ) |
|
| 11 | 9 10 | syl | |- ( ph -> ( <" J "> ` 0 ) = J ) |
| 12 | 7 11 | eqtrid | |- ( ph -> ( F ` 0 ) = J ) |
| 13 | 12 | fveq2d | |- ( ph -> ( I ` ( F ` 0 ) ) = ( I ` J ) ) |
| 14 | 13 | adantr | |- ( ( ph /\ X = Y ) -> ( I ` ( F ` 0 ) ) = ( I ` J ) ) |
| 15 | 14 5 | eqtrd | |- ( ( ph /\ X = Y ) -> ( I ` ( F ` 0 ) ) = { X } ) |
| 16 | df-ne | |- ( X =/= Y <-> -. X = Y ) |
|
| 17 | 16 6 | sylan2br | |- ( ( ph /\ -. X = Y ) -> { X , Y } C_ ( I ` J ) ) |
| 18 | 13 | adantr | |- ( ( ph /\ -. X = Y ) -> ( I ` ( F ` 0 ) ) = ( I ` J ) ) |
| 19 | 17 18 | sseqtrrd | |- ( ( ph /\ -. X = Y ) -> { X , Y } C_ ( I ` ( F ` 0 ) ) ) |
| 20 | 15 19 | ifpimpda | |- ( ph -> if- ( X = Y , ( I ` ( F ` 0 ) ) = { X } , { X , Y } C_ ( I ` ( F ` 0 ) ) ) ) |
| 21 | 1 | fveq1i | |- ( P ` 0 ) = ( <" X Y "> ` 0 ) |
| 22 | s2fv0 | |- ( X e. V -> ( <" X Y "> ` 0 ) = X ) |
|
| 23 | 3 22 | syl | |- ( ph -> ( <" X Y "> ` 0 ) = X ) |
| 24 | 21 23 | eqtrid | |- ( ph -> ( P ` 0 ) = X ) |
| 25 | 1 | fveq1i | |- ( P ` 1 ) = ( <" X Y "> ` 1 ) |
| 26 | s2fv1 | |- ( Y e. V -> ( <" X Y "> ` 1 ) = Y ) |
|
| 27 | 4 26 | syl | |- ( ph -> ( <" X Y "> ` 1 ) = Y ) |
| 28 | 25 27 | eqtrid | |- ( ph -> ( P ` 1 ) = Y ) |
| 29 | eqeq12 | |- ( ( ( P ` 0 ) = X /\ ( P ` 1 ) = Y ) -> ( ( P ` 0 ) = ( P ` 1 ) <-> X = Y ) ) |
|
| 30 | sneq | |- ( ( P ` 0 ) = X -> { ( P ` 0 ) } = { X } ) |
|
| 31 | 30 | adantr | |- ( ( ( P ` 0 ) = X /\ ( P ` 1 ) = Y ) -> { ( P ` 0 ) } = { X } ) |
| 32 | 31 | eqeq2d | |- ( ( ( P ` 0 ) = X /\ ( P ` 1 ) = Y ) -> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) } <-> ( I ` ( F ` 0 ) ) = { X } ) ) |
| 33 | preq12 | |- ( ( ( P ` 0 ) = X /\ ( P ` 1 ) = Y ) -> { ( P ` 0 ) , ( P ` 1 ) } = { X , Y } ) |
|
| 34 | 33 | sseq1d | |- ( ( ( P ` 0 ) = X /\ ( P ` 1 ) = Y ) -> ( { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) <-> { X , Y } C_ ( I ` ( F ` 0 ) ) ) ) |
| 35 | 29 32 34 | ifpbi123d | |- ( ( ( P ` 0 ) = X /\ ( P ` 1 ) = Y ) -> ( if- ( ( P ` 0 ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) <-> if- ( X = Y , ( I ` ( F ` 0 ) ) = { X } , { X , Y } C_ ( I ` ( F ` 0 ) ) ) ) ) |
| 36 | 24 28 35 | syl2anc | |- ( ph -> ( if- ( ( P ` 0 ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) <-> if- ( X = Y , ( I ` ( F ` 0 ) ) = { X } , { X , Y } C_ ( I ` ( F ` 0 ) ) ) ) ) |
| 37 | 20 36 | mpbird | |- ( ph -> if- ( ( P ` 0 ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) ) |
| 38 | c0ex | |- 0 e. _V |
|
| 39 | oveq1 | |- ( k = 0 -> ( k + 1 ) = ( 0 + 1 ) ) |
|
| 40 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 41 | 39 40 | eqtrdi | |- ( k = 0 -> ( k + 1 ) = 1 ) |
| 42 | wkslem2 | |- ( ( k = 0 /\ ( k + 1 ) = 1 ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) <-> if- ( ( P ` 0 ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) ) ) |
|
| 43 | 41 42 | mpdan | |- ( k = 0 -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) <-> if- ( ( P ` 0 ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) ) ) |
| 44 | 38 43 | ralsn | |- ( A. k e. { 0 } if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) <-> if- ( ( P ` 0 ) = ( P ` 1 ) , ( I ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( I ` ( F ` 0 ) ) ) ) |
| 45 | 37 44 | sylibr | |- ( ph -> A. k e. { 0 } if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |
| 46 | 2 | fveq2i | |- ( # ` F ) = ( # ` <" J "> ) |
| 47 | s1len | |- ( # ` <" J "> ) = 1 |
|
| 48 | 46 47 | eqtri | |- ( # ` F ) = 1 |
| 49 | 48 | oveq2i | |- ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 1 ) |
| 50 | fzo01 | |- ( 0 ..^ 1 ) = { 0 } |
|
| 51 | 49 50 | eqtri | |- ( 0 ..^ ( # ` F ) ) = { 0 } |
| 52 | 51 | a1i | |- ( ph -> ( 0 ..^ ( # ` F ) ) = { 0 } ) |
| 53 | 45 52 | raleqtrrdv | |- ( ph -> A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) |