This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for 1wlkd . (Contributed by AV, 22-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1wlkd.p | ⊢ 𝑃 = 〈“ 𝑋 𝑌 ”〉 | |
| 1wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 ”〉 | ||
| 1wlkd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| 1wlkd.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| 1wlkd.l | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → ( 𝐼 ‘ 𝐽 ) = { 𝑋 } ) | ||
| 1wlkd.j | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → { 𝑋 , 𝑌 } ⊆ ( 𝐼 ‘ 𝐽 ) ) | ||
| Assertion | 1wlkdlem2 | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐼 ‘ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1wlkd.p | ⊢ 𝑃 = 〈“ 𝑋 𝑌 ”〉 | |
| 2 | 1wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 ”〉 | |
| 3 | 1wlkd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 4 | 1wlkd.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 5 | 1wlkd.l | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → ( 𝐼 ‘ 𝐽 ) = { 𝑋 } ) | |
| 6 | 1wlkd.j | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → { 𝑋 , 𝑌 } ⊆ ( 𝐼 ‘ 𝐽 ) ) | |
| 7 | snidg | ⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ { 𝑋 } ) | |
| 8 | 3 7 | syl | ⊢ ( 𝜑 → 𝑋 ∈ { 𝑋 } ) |
| 9 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → 𝑋 ∈ { 𝑋 } ) |
| 10 | 9 5 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → 𝑋 ∈ ( 𝐼 ‘ 𝐽 ) ) |
| 11 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → 𝑌 ∈ 𝑉 ) |
| 12 | prssg | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑋 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝑌 ∈ ( 𝐼 ‘ 𝐽 ) ) ↔ { 𝑋 , 𝑌 } ⊆ ( 𝐼 ‘ 𝐽 ) ) ) | |
| 13 | 3 11 12 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝑋 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝑌 ∈ ( 𝐼 ‘ 𝐽 ) ) ↔ { 𝑋 , 𝑌 } ⊆ ( 𝐼 ‘ 𝐽 ) ) ) |
| 14 | 6 13 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → ( 𝑋 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝑌 ∈ ( 𝐼 ‘ 𝐽 ) ) ) |
| 15 | 14 | simpld | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → 𝑋 ∈ ( 𝐼 ‘ 𝐽 ) ) |
| 16 | 10 15 | pm2.61dane | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐼 ‘ 𝐽 ) ) |