This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for upgr1wlkd . (Contributed by AV, 22-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgr1wlkd.p | ⊢ 𝑃 = 〈“ 𝑋 𝑌 ”〉 | |
| upgr1wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 ”〉 | ||
| upgr1wlkd.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) | ||
| upgr1wlkd.y | ⊢ ( 𝜑 → 𝑌 ∈ ( Vtx ‘ 𝐺 ) ) | ||
| upgr1wlkd.j | ⊢ ( 𝜑 → ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑌 } ) | ||
| Assertion | upgr1wlkdlem1 | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgr1wlkd.p | ⊢ 𝑃 = 〈“ 𝑋 𝑌 ”〉 | |
| 2 | upgr1wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 ”〉 | |
| 3 | upgr1wlkd.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) | |
| 4 | upgr1wlkd.y | ⊢ ( 𝜑 → 𝑌 ∈ ( Vtx ‘ 𝐺 ) ) | |
| 5 | upgr1wlkd.j | ⊢ ( 𝜑 → ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑌 } ) | |
| 6 | preq2 | ⊢ ( 𝑌 = 𝑋 → { 𝑋 , 𝑌 } = { 𝑋 , 𝑋 } ) | |
| 7 | 6 | eqeq2d | ⊢ ( 𝑌 = 𝑋 → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑌 } ↔ ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑋 } ) ) |
| 8 | 7 | eqcoms | ⊢ ( 𝑋 = 𝑌 → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑌 } ↔ ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑋 } ) ) |
| 9 | simpl | ⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑋 } ∧ 𝜑 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑋 } ) | |
| 10 | dfsn2 | ⊢ { 𝑋 } = { 𝑋 , 𝑋 } | |
| 11 | 9 10 | eqtr4di | ⊢ ( ( ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑋 } ∧ 𝜑 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 } ) |
| 12 | 11 | ex | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑋 } → ( 𝜑 → ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 } ) ) |
| 13 | 8 12 | biimtrdi | ⊢ ( 𝑋 = 𝑌 → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑌 } → ( 𝜑 → ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 } ) ) ) |
| 14 | 13 | com13 | ⊢ ( 𝜑 → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 , 𝑌 } → ( 𝑋 = 𝑌 → ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 } ) ) ) |
| 15 | 5 14 | mpd | ⊢ ( 𝜑 → ( 𝑋 = 𝑌 → ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 } ) ) |
| 16 | 15 | imp | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝐽 ) = { 𝑋 } ) |