This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a trail. The two vertices need not be distinct (in the case of a loop). (Contributed by Alexander van der Vekens, 3-Dec-2017) (Revised by AV, 22-Jan-2021) (Revised by AV, 23-Mar-2021) (Proof shortened by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1wlkd.p | ⊢ 𝑃 = 〈“ 𝑋 𝑌 ”〉 | |
| 1wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 ”〉 | ||
| 1wlkd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| 1wlkd.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| 1wlkd.l | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → ( 𝐼 ‘ 𝐽 ) = { 𝑋 } ) | ||
| 1wlkd.j | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → { 𝑋 , 𝑌 } ⊆ ( 𝐼 ‘ 𝐽 ) ) | ||
| 1wlkd.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | ||
| 1wlkd.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| Assertion | 1trld | ⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1wlkd.p | ⊢ 𝑃 = 〈“ 𝑋 𝑌 ”〉 | |
| 2 | 1wlkd.f | ⊢ 𝐹 = 〈“ 𝐽 ”〉 | |
| 3 | 1wlkd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 4 | 1wlkd.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 5 | 1wlkd.l | ⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → ( 𝐼 ‘ 𝐽 ) = { 𝑋 } ) | |
| 6 | 1wlkd.j | ⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → { 𝑋 , 𝑌 } ⊆ ( 𝐼 ‘ 𝐽 ) ) | |
| 7 | 1wlkd.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 8 | 1wlkd.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 9 | 1 2 3 4 5 6 7 8 | 1wlkd | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |
| 10 | funcnvs1 | ⊢ Fun ◡ 〈“ 𝐽 ”〉 | |
| 11 | 2 | cnveqi | ⊢ ◡ 𝐹 = ◡ 〈“ 𝐽 ”〉 |
| 12 | 11 | funeqi | ⊢ ( Fun ◡ 𝐹 ↔ Fun ◡ 〈“ 𝐽 ”〉 ) |
| 13 | 10 12 | mpbir | ⊢ Fun ◡ 𝐹 |
| 14 | istrl | ⊢ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ Fun ◡ 𝐹 ) ) | |
| 15 | 9 13 14 | sylanblrc | ⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |