This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group with exactly one normal subgroup is trivial. (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1nsgtrivd.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 1nsgtrivd.2 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| 1nsgtrivd.3 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | ||
| 1nsgtrivd.4 | ⊢ ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) ≈ 1o ) | ||
| Assertion | 1nsgtrivd | ⊢ ( 𝜑 → 𝐵 = { 0 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nsgtrivd.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | 1nsgtrivd.2 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | 1nsgtrivd.3 | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) | |
| 4 | 1nsgtrivd.4 | ⊢ ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) ≈ 1o ) | |
| 5 | 1 | nsgid | ⊢ ( 𝐺 ∈ Grp → 𝐵 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 6 | 3 5 | syl | ⊢ ( 𝜑 → 𝐵 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 7 | 2 | 0nsg | ⊢ ( 𝐺 ∈ Grp → { 0 } ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 8 | 3 7 | syl | ⊢ ( 𝜑 → { 0 } ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 9 | en1eqsn | ⊢ ( ( { 0 } ∈ ( NrmSGrp ‘ 𝐺 ) ∧ ( NrmSGrp ‘ 𝐺 ) ≈ 1o ) → ( NrmSGrp ‘ 𝐺 ) = { { 0 } } ) | |
| 10 | 8 4 9 | syl2anc | ⊢ ( 𝜑 → ( NrmSGrp ‘ 𝐺 ) = { { 0 } } ) |
| 11 | 6 10 | eleqtrd | ⊢ ( 𝜑 → 𝐵 ∈ { { 0 } } ) |
| 12 | snex | ⊢ { 0 } ∈ V | |
| 13 | elsn2g | ⊢ ( { 0 } ∈ V → ( 𝐵 ∈ { { 0 } } ↔ 𝐵 = { 0 } ) ) | |
| 14 | 12 13 | mp1i | ⊢ ( 𝜑 → ( 𝐵 ∈ { { 0 } } ↔ 𝐵 = { 0 } ) ) |
| 15 | 11 14 | mpbid | ⊢ ( 𝜑 → 𝐵 = { 0 } ) |