This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A group with exactly one normal subgroup is trivial. (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1nsgtrivd.1 | |- B = ( Base ` G ) |
|
| 1nsgtrivd.2 | |- .0. = ( 0g ` G ) |
||
| 1nsgtrivd.3 | |- ( ph -> G e. Grp ) |
||
| 1nsgtrivd.4 | |- ( ph -> ( NrmSGrp ` G ) ~~ 1o ) |
||
| Assertion | 1nsgtrivd | |- ( ph -> B = { .0. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nsgtrivd.1 | |- B = ( Base ` G ) |
|
| 2 | 1nsgtrivd.2 | |- .0. = ( 0g ` G ) |
|
| 3 | 1nsgtrivd.3 | |- ( ph -> G e. Grp ) |
|
| 4 | 1nsgtrivd.4 | |- ( ph -> ( NrmSGrp ` G ) ~~ 1o ) |
|
| 5 | 1 | nsgid | |- ( G e. Grp -> B e. ( NrmSGrp ` G ) ) |
| 6 | 3 5 | syl | |- ( ph -> B e. ( NrmSGrp ` G ) ) |
| 7 | 2 | 0nsg | |- ( G e. Grp -> { .0. } e. ( NrmSGrp ` G ) ) |
| 8 | 3 7 | syl | |- ( ph -> { .0. } e. ( NrmSGrp ` G ) ) |
| 9 | en1eqsn | |- ( ( { .0. } e. ( NrmSGrp ` G ) /\ ( NrmSGrp ` G ) ~~ 1o ) -> ( NrmSGrp ` G ) = { { .0. } } ) |
|
| 10 | 8 4 9 | syl2anc | |- ( ph -> ( NrmSGrp ` G ) = { { .0. } } ) |
| 11 | 6 10 | eleqtrd | |- ( ph -> B e. { { .0. } } ) |
| 12 | snex | |- { .0. } e. _V |
|
| 13 | elsn2g | |- ( { .0. } e. _V -> ( B e. { { .0. } } <-> B = { .0. } ) ) |
|
| 14 | 12 13 | mp1i | |- ( ph -> ( B e. { { .0. } } <-> B = { .0. } ) ) |
| 15 | 11 14 | mpbid | |- ( ph -> B = { .0. } ) |