This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function on a singleton. (Contributed by Alexander van der Vekens, 3-Dec-2017) (Proof shortened by AV, 18-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1fv | |- ( ( N e. V /\ P = { <. 0 , N >. } ) -> ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z | |- 0 e. ZZ |
|
| 2 | 1 | a1i | |- ( N e. V -> 0 e. ZZ ) |
| 3 | id | |- ( N e. V -> N e. V ) |
|
| 4 | 2 3 | fsnd | |- ( N e. V -> { <. 0 , N >. } : { 0 } --> V ) |
| 5 | fvsng | |- ( ( 0 e. ZZ /\ N e. V ) -> ( { <. 0 , N >. } ` 0 ) = N ) |
|
| 6 | 1 5 | mpan | |- ( N e. V -> ( { <. 0 , N >. } ` 0 ) = N ) |
| 7 | 4 6 | jca | |- ( N e. V -> ( { <. 0 , N >. } : { 0 } --> V /\ ( { <. 0 , N >. } ` 0 ) = N ) ) |
| 8 | 7 | adantr | |- ( ( N e. V /\ P = { <. 0 , N >. } ) -> ( { <. 0 , N >. } : { 0 } --> V /\ ( { <. 0 , N >. } ` 0 ) = N ) ) |
| 9 | id | |- ( P = { <. 0 , N >. } -> P = { <. 0 , N >. } ) |
|
| 10 | fz0sn | |- ( 0 ... 0 ) = { 0 } |
|
| 11 | 10 | a1i | |- ( P = { <. 0 , N >. } -> ( 0 ... 0 ) = { 0 } ) |
| 12 | 9 11 | feq12d | |- ( P = { <. 0 , N >. } -> ( P : ( 0 ... 0 ) --> V <-> { <. 0 , N >. } : { 0 } --> V ) ) |
| 13 | fveq1 | |- ( P = { <. 0 , N >. } -> ( P ` 0 ) = ( { <. 0 , N >. } ` 0 ) ) |
|
| 14 | 13 | eqeq1d | |- ( P = { <. 0 , N >. } -> ( ( P ` 0 ) = N <-> ( { <. 0 , N >. } ` 0 ) = N ) ) |
| 15 | 12 14 | anbi12d | |- ( P = { <. 0 , N >. } -> ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) <-> ( { <. 0 , N >. } : { 0 } --> V /\ ( { <. 0 , N >. } ` 0 ) = N ) ) ) |
| 16 | 15 | adantl | |- ( ( N e. V /\ P = { <. 0 , N >. } ) -> ( ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) <-> ( { <. 0 , N >. } : { 0 } --> V /\ ( { <. 0 , N >. } ` 0 ) = N ) ) ) |
| 17 | 8 16 | mpbird | |- ( ( N e. V /\ P = { <. 0 , N >. } ) -> ( P : ( 0 ... 0 ) --> V /\ ( P ` 0 ) = N ) ) |