This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 1arith . (Contributed by Mario Carneiro, 30-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 1arith.1 | ⊢ 𝑀 = ( 𝑛 ∈ ℕ ↦ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ) | |
| Assertion | 1arithlem2 | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( ( 𝑀 ‘ 𝑁 ) ‘ 𝑃 ) = ( 𝑃 pCnt 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1arith.1 | ⊢ 𝑀 = ( 𝑛 ∈ ℕ ↦ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑛 ) ) ) | |
| 2 | 1 | 1arithlem1 | ⊢ ( 𝑁 ∈ ℕ → ( 𝑀 ‘ 𝑁 ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑁 ) ) ) |
| 3 | 2 | fveq1d | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑀 ‘ 𝑁 ) ‘ 𝑃 ) = ( ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑁 ) ) ‘ 𝑃 ) ) |
| 4 | oveq1 | ⊢ ( 𝑝 = 𝑃 → ( 𝑝 pCnt 𝑁 ) = ( 𝑃 pCnt 𝑁 ) ) | |
| 5 | eqid | ⊢ ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑁 ) ) = ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑁 ) ) | |
| 6 | ovex | ⊢ ( 𝑃 pCnt 𝑁 ) ∈ V | |
| 7 | 4 5 6 | fvmpt | ⊢ ( 𝑃 ∈ ℙ → ( ( 𝑝 ∈ ℙ ↦ ( 𝑝 pCnt 𝑁 ) ) ‘ 𝑃 ) = ( 𝑃 pCnt 𝑁 ) ) |
| 8 | 3 7 | sylan9eq | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ ) → ( ( 𝑀 ‘ 𝑁 ) ‘ 𝑃 ) = ( 𝑃 pCnt 𝑁 ) ) |