This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem 19.26 with triple conjunction. (Contributed by NM, 13-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 19.26-3an | ⊢ ( ∀ 𝑥 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ∀ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ∧ ∀ 𝑥 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.26 | ⊢ ( ∀ 𝑥 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) ) | |
| 2 | 1 | anbi1i | ⊢ ( ( ∀ 𝑥 ( 𝜑 ∧ 𝜓 ) ∧ ∀ 𝑥 𝜒 ) ↔ ( ( ∀ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) ∧ ∀ 𝑥 𝜒 ) ) |
| 3 | df-3an | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) | |
| 4 | 3 | albii | ⊢ ( ∀ 𝑥 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ∀ 𝑥 ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) |
| 5 | 19.26 | ⊢ ( ∀ 𝑥 ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ↔ ( ∀ 𝑥 ( 𝜑 ∧ 𝜓 ) ∧ ∀ 𝑥 𝜒 ) ) | |
| 6 | 4 5 | bitri | ⊢ ( ∀ 𝑥 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ∀ 𝑥 ( 𝜑 ∧ 𝜓 ) ∧ ∀ 𝑥 𝜒 ) ) |
| 7 | df-3an | ⊢ ( ( ∀ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ∧ ∀ 𝑥 𝜒 ) ↔ ( ( ∀ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) ∧ ∀ 𝑥 𝜒 ) ) | |
| 8 | 2 6 7 | 3bitr4i | ⊢ ( ∀ 𝑥 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ∀ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ∧ ∀ 𝑥 𝜒 ) ) |