This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem 19.26 with triple conjunction. (Contributed by NM, 13-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 19.26-3an | |- ( A. x ( ph /\ ps /\ ch ) <-> ( A. x ph /\ A. x ps /\ A. x ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.26 | |- ( A. x ( ph /\ ps ) <-> ( A. x ph /\ A. x ps ) ) |
|
| 2 | 1 | anbi1i | |- ( ( A. x ( ph /\ ps ) /\ A. x ch ) <-> ( ( A. x ph /\ A. x ps ) /\ A. x ch ) ) |
| 3 | df-3an | |- ( ( ph /\ ps /\ ch ) <-> ( ( ph /\ ps ) /\ ch ) ) |
|
| 4 | 3 | albii | |- ( A. x ( ph /\ ps /\ ch ) <-> A. x ( ( ph /\ ps ) /\ ch ) ) |
| 5 | 19.26 | |- ( A. x ( ( ph /\ ps ) /\ ch ) <-> ( A. x ( ph /\ ps ) /\ A. x ch ) ) |
|
| 6 | 4 5 | bitri | |- ( A. x ( ph /\ ps /\ ch ) <-> ( A. x ( ph /\ ps ) /\ A. x ch ) ) |
| 7 | df-3an | |- ( ( A. x ph /\ A. x ps /\ A. x ch ) <-> ( ( A. x ph /\ A. x ps ) /\ A. x ch ) ) |
|
| 8 | 2 6 7 | 3bitr4i | |- ( A. x ( ph /\ ps /\ ch ) <-> ( A. x ph /\ A. x ps /\ A. x ch ) ) |